Fundamentals of Natural Computing
Title | Fundamentals of Natural Computing PDF eBook |
Author | Leandro Nunes de Castro |
Publisher | CRC Press |
Pages | 674 |
Release | 2006-06-02 |
Genre | Computers |
ISBN | 1420011448 |
Natural computing brings together nature and computing to develop new computational tools for problem solving; to synthesize natural patterns and behaviors in computers; and to potentially design novel types of computers. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications presents a wide-ranging survey of novel techniqu
Natural Computing: DNA, Quantum Bits, and the Future of Smart Machines
Title | Natural Computing: DNA, Quantum Bits, and the Future of Smart Machines PDF eBook |
Author | Dennis E. Shasha |
Publisher | W. W. Norton & Company |
Pages | 297 |
Release | 2010-04-27 |
Genre | Computers |
ISBN | 0393336832 |
Drawing on interviews with 15 leading scientists, the authors present an unexpected vision: the future of computing is a synthesis with nature.
An Introduction to Natural Computation
Title | An Introduction to Natural Computation PDF eBook |
Author | Dana H. Ballard |
Publisher | MIT Press |
Pages | 338 |
Release | 1999-01-22 |
Genre | Psychology |
ISBN | 9780262522588 |
This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It is now clear that the brain is unlikely to be understood without recourse to computational theories. The theme of An Introduction to Natural Computation is that ideas from diverse areas such as neuroscience, information theory, and optimization theory have recently been extended in ways that make them useful for describing the brains programs. This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It stresses the broad spectrum of learning models—ranging from neural network learning through reinforcement learning to genetic learning—and situates the various models in their appropriate neural context. To write about models of the brain before the brain is fully understood is a delicate matter. Very detailed models of the neural circuitry risk losing track of the task the brain is trying to solve. At the other extreme, models that represent cognitive constructs can be so abstract that they lose all relationship to neurobiology. An Introduction to Natural Computation takes the middle ground and stresses the computational task while staying near the neurobiology.
Natural Computing Algorithms
Title | Natural Computing Algorithms PDF eBook |
Author | Anthony Brabazon |
Publisher | Springer |
Pages | 554 |
Release | 2015-10-08 |
Genre | Computers |
ISBN | 3662436310 |
The field of natural computing has been the focus of a substantial research effort in recent decades. One particular strand of this research concerns the development of computational algorithms using metaphorical inspiration from systems and phenomena that occur in the natural world. These naturally inspired computing algorithms have proven to be successful problem-solvers across domains as diverse as management science, bioinformatics, finance, marketing, engineering, architecture and design. This book is a comprehensive introduction to natural computing algorithms, suitable for academic and industrial researchers and for undergraduate and graduate courses on natural computing in computer science, engineering and management science.
Introduction to Evolutionary Computing
Title | Introduction to Evolutionary Computing PDF eBook |
Author | A.E. Eiben |
Publisher | Springer Science & Business Media |
Pages | 328 |
Release | 2007-08-06 |
Genre | Computers |
ISBN | 9783540401841 |
The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
Natural Computing and Beyond
Title | Natural Computing and Beyond PDF eBook |
Author | Yasuhiro Suzuki |
Publisher | Springer Science & Business Media |
Pages | 163 |
Release | 2013-04-01 |
Genre | Computers |
ISBN | 4431543945 |
This book contains the joint proceedings of the Winter School of Hakodate (WSH) 2011 held in Hakodate, Japan, March 15–16, 2011, and the 6th International Workshop on Natural Computing (6th IWNC) held in Tokyo, Japan, March 28–30, 2012, organized by the Special Interest Group of Natural Computing (SIG-NAC), the Japanese Society for Artificial Intelligence (JSAI). This volume compiles refereed contributions to various aspects of natural computing, ranging from computing with slime mold, artificial chemistry, eco-physics, and synthetic biology, to computational aesthetics.
Reservoir Computing
Title | Reservoir Computing PDF eBook |
Author | Kohei Nakajima |
Publisher | Springer Nature |
Pages | 463 |
Release | 2021-08-05 |
Genre | Computers |
ISBN | 9811316872 |
This book is the first comprehensive book about reservoir computing (RC). RC is a powerful and broadly applicable computational framework based on recurrent neural networks. Its advantages lie in small training data set requirements, fast training, inherent memory and high flexibility for various hardware implementations. It originated from computational neuroscience and machine learning but has, in recent years, spread dramatically, and has been introduced into a wide variety of fields, including complex systems science, physics, material science, biological science, quantum machine learning, optical communication systems, and robotics. Reviewing the current state of the art and providing a concise guide to the field, this book introduces readers to its basic concepts, theory, techniques, physical implementations and applications. The book is sub-structured into two major parts: theory and physical implementations. Both parts consist of a compilation of chapters, authored by leading experts in their respective fields. The first part is devoted to theoretical developments of RC, extending the framework from the conventional recurrent neural network context to a more general dynamical systems context. With this broadened perspective, RC is not restricted to the area of machine learning but is being connected to a much wider class of systems. The second part of the book focuses on the utilization of physical dynamical systems as reservoirs, a framework referred to as physical reservoir computing. A variety of physical systems and substrates have already been suggested and used for the implementation of reservoir computing. Among these physical systems which cover a wide range of spatial and temporal scales, are mechanical and optical systems, nanomaterials, spintronics, and quantum many body systems. This book offers a valuable resource for researchers (Ph.D. students and experts alike) and practitioners working in the field of machine learning, artificial intelligence, robotics, neuromorphic computing, complex systems, and physics.