Thermal Transport in Low Dimensions

Thermal Transport in Low Dimensions
Title Thermal Transport in Low Dimensions PDF eBook
Author Stefano Lepri
Publisher Springer
Pages 418
Release 2016-04-07
Genre Science
ISBN 3319292617

Download Thermal Transport in Low Dimensions Book in PDF, Epub and Kindle

Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of nanotubes and graphene. Possible future developments on heat flow control and thermoelectric energy conversion will be outlined. This volume aims at being the first step for graduate students and researchers entering the field as well as a reference for the community of scientists that, from different backgrounds (theoretical physics, mathematics, material sciences and engineering), has grown in the recent years around those themes.

Nano-scale Heat Transfer in Nanostructures

Nano-scale Heat Transfer in Nanostructures
Title Nano-scale Heat Transfer in Nanostructures PDF eBook
Author Jihong Al-Ghalith
Publisher Springer
Pages 88
Release 2018-03-06
Genre Science
ISBN 3319738828

Download Nano-scale Heat Transfer in Nanostructures Book in PDF, Epub and Kindle

The book introduces modern atomistic techniques for predicting heat transfer in nanostructures, and discusses the applications of these techniques on three modern topics. The study of heat transport in screw-dislocated nanowires with low thermal conductivity in their bulk form represents the knowledge base needed for engineering thermal transport in advanced thermoelectric and electronic materials, and suggests a new route to lower thermal conductivity that could promote thermoelectricity. The study of high-temperature coating composite materials facilitates the understanding of the role played by composition and structural characterization, which is difficult to approach via experiments. And the understanding of the impact of deformations, such as bending and collapsing on thermal transport along carbon nanotubes, is important as carbon nanotubes, due to their exceptional thermal and mechanical properties, are excellent material candidates in a variety of applications, including thermal interface materials, thermal switches and composite materials.

Nanoscale Energy Transport and Conversion

Nanoscale Energy Transport and Conversion
Title Nanoscale Energy Transport and Conversion PDF eBook
Author Gang Chen
Publisher Oxford University Press
Pages 570
Release 2005-03-03
Genre Science
ISBN 9780199774685

Download Nanoscale Energy Transport and Conversion Book in PDF, Epub and Kindle

This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.

Microscale and Nanoscale Heat Transfer

Microscale and Nanoscale Heat Transfer
Title Microscale and Nanoscale Heat Transfer PDF eBook
Author C.B. Sobhan
Publisher CRC Press
Pages 440
Release 2008-06-12
Genre Science
ISBN 1420007114

Download Microscale and Nanoscale Heat Transfer Book in PDF, Epub and Kindle

Through analyses, experimental results, and worked-out numerical examples, Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications explores the methods and observations of thermophysical phenomena in size-affected domains. Compiling the most relevant findings from the literature, along with results from their own re

Microscale and Nanoscale Heat Transfer

Microscale and Nanoscale Heat Transfer
Title Microscale and Nanoscale Heat Transfer PDF eBook
Author Mourad Rebay
Publisher CRC Press
Pages 499
Release 2016-01-06
Genre Science
ISBN 1498736319

Download Microscale and Nanoscale Heat Transfer Book in PDF, Epub and Kindle

Microscale and Nanoscale Heat Transfer: Analysis, Design, and Applications features contributions from prominent researchers in the field of micro- and nanoscale heat transfer and associated technologies and offers a complete understanding of thermal transport in nano-materials and devices. Nanofluids can be used as working fluids in thermal system

Nano/Microscale Heat Transfer

Nano/Microscale Heat Transfer
Title Nano/Microscale Heat Transfer PDF eBook
Author Zhuomin M. Zhang
Publisher Springer Nature
Pages 780
Release 2020-06-23
Genre Science
ISBN 3030450392

Download Nano/Microscale Heat Transfer Book in PDF, Epub and Kindle

This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.

Thermal Energy at the Nanoscale

Thermal Energy at the Nanoscale
Title Thermal Energy at the Nanoscale PDF eBook
Author Timothy S. Fisher
Publisher World Scientific Publishing Company
Pages 204
Release 2014
Genre Science
ISBN

Download Thermal Energy at the Nanoscale Book in PDF, Epub and Kindle

These lecture notes provide a detailed treatment of the thermal energy storage and transport by conduction in natural and fabricated structures. Thermal energy in two carriers, i.e. phonons and electrons -- are explored from first principles. For solid-state transport, a common Landauer framework is used for heat flow. Issues including the quantum of thermal conductance, ballistic interface resistance, and carrier scattering are elucidated. Bulk material properties, such as thermal and electrical conductivity, are derived from particle transport theories, and the effects of spatial confinement on these properties are established.