Nanoscale Semiconductors

Nanoscale Semiconductors
Title Nanoscale Semiconductors PDF eBook
Author Balwinder Raj
Publisher CRC Press
Pages 259
Release 2022-08-30
Genre Technology & Engineering
ISBN 1000637506

Download Nanoscale Semiconductors Book in PDF, Epub and Kindle

This reference text discusses conduction mechanism, structure construction, operation, performance evaluation and applications of nanoscale semiconductor materials and devices in VLSI circuits design. The text explains nano materials, devices, analysis of its design parameters to meet the sub-nano-regime challenges for CMOS devices. It discusses important topics including memory design and testing, fin field-effect transistor (FinFET), tunnel field-effect transistor (TFET) for sensors design, carbon nanotube field-effect transistor (CNTFET) for memory design, nanowire and nanoribbons, nano devices based low-power-circuit design, and microelectromechanical systems (MEMS) design. The book discusses nanoscale semiconductor materials, device models, and circuit design covers nanoscale semiconductor device structures and modeling discusses novel nano-semiconductor devices such as FinFET, CNTFET, and Nanowire covers power dissipation and reduction techniques Discussing innovative nanoscale semiconductor device structures and modeling, this text will be useful for graduate students, and academic researchers in diverse areas such as electrical engineering, electronics and communication engineering, nanoscience, and nanotechnology. It covers nano devices based low-power-circuit design, nanoscale devices based digital VLSI circuits, and novel devices based analog VLSI circuits design.

Semiconductor Nanomaterials for Flexible Technologies

Semiconductor Nanomaterials for Flexible Technologies
Title Semiconductor Nanomaterials for Flexible Technologies PDF eBook
Author Yugang Sun
Publisher William Andrew
Pages 320
Release 2010-05-20
Genre Technology & Engineering
ISBN 1437778240

Download Semiconductor Nanomaterials for Flexible Technologies Book in PDF, Epub and Kindle

This book is an overview of the strategies to generate high-quality films of one-dimensional semiconductor nanostructures on flexible substrates (e.g., plastics) and the use of them as building blocks to fabricating flexible devices (including electronics, optoelectronics, sensors, power systems). In addition to engineering aspects, the physics and chemistry behind the fabrication and device operation will also be discussed as well. Internationally recognized scientists from academia, national laboratories, and industries, who are the leading researchers in the emerging areas, are contributing exceptional chapters according to their cutting-edge research results and expertise. This book will be an on-time addition to the literature in nanoscience and engineering. It will be suitable for graduate students and researchers as a useful reference to stimulate their research interest as well as facilitate their research in nanoscience and engineering. - Considers the physics and chemistry behind fabrication and device operation - Discusses applications to electronics, optoelectronics, sensors and power systems - Examines existing technologies and investigates emerging trends

Semiconductor Nanotechnology

Semiconductor Nanotechnology
Title Semiconductor Nanotechnology PDF eBook
Author Stephen M. Goodnick
Publisher Springer
Pages 241
Release 2018-07-26
Genre Technology & Engineering
ISBN 3319918966

Download Semiconductor Nanotechnology Book in PDF, Epub and Kindle

This book presents research dedicated to solving scientific and technological problems in many areas of electronics, photonics and renewable energy. Energy and information are interconnected and are essential elements for the development of human society. Transmission, processing and storage of information requires energy consumption, while the efficient use and access to new energy sources requires new information (ideas and expertise) and the design of novel systems such as photovoltaic devices, fuel cells and batteries. Semiconductor physics creates the knowledge base for the development of information (computers, cell phones, etc.) and energy (photovoltaic) technologies. The exchange of ideas and expertise between these two technologies is critical and expands beyond semiconductors. Continued progress in information and renewable energy technologies requires miniaturization of devices and reduction of costs, energy and material consumption. The latest generation of electronic devices is now approaching nanometer scale dimensions, new materials are being introduced into electronics manufacturing at an unprecedented rate, and alternative technologies to mainstream CMOS are evolving. Nanotechnology is widely accepted as a source of potential solutions in securing future progress for information and energy technologies. Semiconductor Nanotechnology features chapters that cover the following areas: atomic scale materials design, bio- and molecular electronics, high frequency electronics, fabrication of nanodevices, magnetic materials and spintronics, materials and processes for integrated and subwave optoelectronics, nanoCMOS, new materials for FETs and other devices, nanoelectronics system architecture, nano optics and lasers, non-silicon materials and devices, chemical and biosensors, quantum effects in devices, nano science and technology applications in the development of novel solar energy devices, and fuel cells and batteries.

Semiconductor Catalysis and Photocatalysis on the Nanoscale

Semiconductor Catalysis and Photocatalysis on the Nanoscale
Title Semiconductor Catalysis and Photocatalysis on the Nanoscale PDF eBook
Author Olexsander L. Stroyuk
Publisher
Pages 0
Release 2010
Genre Catalysts
ISBN 9781617287886

Download Semiconductor Catalysis and Photocatalysis on the Nanoscale Book in PDF, Epub and Kindle

This book reviews the modern state of the catalysts and photocatalysis of chemical reactions by semiconductor nanoparticles and nanoheterostructures with the main accent on the light-driven processes. A background and principles of the semiconductor nanophotocatalysis -- a new trend in photochemistry dealing with the photocatalytic redox-reactions with the participation of semiconductor nanoparticles -- is discussed. A general character of the fundamental principles of the nanophotocatalysts and the "classical" photocatalysis by microcrystalline semiconductors is combined with prominent differences originating from the spatial exciton confinement typical for ultra-small semiconductor nanoparticles.

Stress and Strain Engineering at Nanoscale in Semiconductor Devices

Stress and Strain Engineering at Nanoscale in Semiconductor Devices
Title Stress and Strain Engineering at Nanoscale in Semiconductor Devices PDF eBook
Author Chinmay K. Maiti
Publisher CRC Press
Pages 275
Release 2021-06-29
Genre Science
ISBN 1000404935

Download Stress and Strain Engineering at Nanoscale in Semiconductor Devices Book in PDF, Epub and Kindle

Anticipating a limit to the continuous miniaturization (More-Moore), intense research efforts are being made to co-integrate various functionalities (More-than-Moore) in a single chip. Currently, strain engineering is the main technique used to enhance the performance of advanced semiconductor devices. Written from an engineering applications standpoint, this book encompasses broad areas of semiconductor devices involving the design, simulation, and analysis of Si, heterostructure silicongermanium (SiGe), and III-N compound semiconductor devices. The book provides the background and physical insight needed to understand the new and future developments in the technology CAD (TCAD) design at the nanoscale. Features Covers stressstrain engineering in semiconductor devices, such as FinFETs and III-V Nitride-based devices Includes comprehensive mobility model for strained substrates in global and local strain techniques and their implementation in device simulations Explains the development of strain/stress relationships and their effects on the band structures of strained substrates Uses design of experiments to find the optimum process conditions Illustrates the use of TCAD for modeling strain-engineered FinFETs for DC and AC performance predictions This book is for graduate students and researchers studying solid-state devices and materials, microelectronics, systems and controls, power electronics, nanomaterials, and electronic materials and devices.

Handbook of Semiconductors

Handbook of Semiconductors
Title Handbook of Semiconductors PDF eBook
Author Ram K. Gupta
Publisher CRC Press
Pages 396
Release 2024-07-10
Genre Technology & Engineering
ISBN 1040040926

Download Handbook of Semiconductors Book in PDF, Epub and Kindle

This book provides readers with state-of-the-art knowledge of established and emerging semiconducting materials, their processing, and the fabrication of chips and microprocessors. In addition to covering the fundamentals of these materials, it details the basics and workings of many semiconducting devices and their role in modern electronics and explores emerging semiconductors and their importance in future devices. • Provides readers with latest advances in semiconductors. • Covers diodes, transistors, and other devices using semiconducting materials. • Covers advances and challenges in semiconductors and their technological applications. • Discusses fundamentals and characteristics of emerging semiconductors for chip manufacturing. This book provides directions to scientists, engineers, and researchers in materials engineering and related disciplines to help them better understand the physics, characteristics, and applications of modern semiconductors.

Semiconductor Nanostructures for Optoelectronic Devices

Semiconductor Nanostructures for Optoelectronic Devices
Title Semiconductor Nanostructures for Optoelectronic Devices PDF eBook
Author Gyu-Chul Yi
Publisher Springer Science & Business Media
Pages 347
Release 2012-01-13
Genre Technology & Engineering
ISBN 3642224806

Download Semiconductor Nanostructures for Optoelectronic Devices Book in PDF, Epub and Kindle

This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.