Nanoscale Ferroelectrics and Multiferroics
Title | Nanoscale Ferroelectrics and Multiferroics PDF eBook |
Author | Miguel Alguero |
Publisher | John Wiley & Sons |
Pages | 984 |
Release | 2016-03-21 |
Genre | Technology & Engineering |
ISBN | 1118935705 |
This two volume set reviews the key issues in processing and characterization of nanoscale ferroelectrics and multiferroics, and provides a comprehensive description of their properties, with an emphasis in differentiating size effects of extrinsic ones like boundary or interface effects. Recently described nanoscale novel phenomena are also addressed. Organized into three parts it addresses key issues in processing (nanostructuring), characterization (of the nanostructured materials) and nanoscale effects. Taking full advantage of the synergies between nanoscale ferroelectrics and multiferroics, the text covers materials nanostructured at all levels, from ceramic technologies like ferroelectric nanopowders, bulk nanostructured ceramics and thick films, and magnetoelectric nanocomposites, to thin films, either polycrystalline layer heterostructures or epitaxial systems, and to nanoscale free standing objects with specific geometries, such as nanowires and tubes at different levels of development. This set is developed from the high level European scientific knowledge platform built within the COST (European Cooperation in Science and Technology) Action on Single and multiphase ferroics and multiferroics with restricted geometries (SIMUFER, ref. MP0904). Chapter contributors have been carefully selected, and have all made major contributions to knowledge of the respective topics, and overall, they are among most respected scientists in the field.
Nanoscale Ferroelectrics and Multiferroics
Title | Nanoscale Ferroelectrics and Multiferroics PDF eBook |
Author | Miguel Alguero |
Publisher | John Wiley & Sons |
Pages | 994 |
Release | 2016-05-31 |
Genre | Technology & Engineering |
ISBN | 1118935756 |
Dieses Buch beleuchtet die wichtigsten Aspekte der Verarbeitung und Charakterisierung von Ferroelektrika und Multiferroika auf Nanoebene, präsentiert eine umfassende Beschreibung der jeweiligen Eigenschaften und legt dabei den Schwerpunkt auf die Unterscheidung von Größeneffekten bei extrinsischen Eigenschaften wie Rand- oder Interface-Effekte. Eingegangen wird auch auf neuartige Nanoebene. Das Fachbuch ist in drei Abschnitte unterteilt und beschreibt die Verarbeitung (Nanostrukturierung), Charakterisierung (nanostrukturierter Materialien) und Nanoeffekte. Unter Rückgriff auf die Synergien zwischen Nano-Ferroelektrika und -Multiferroika werden Materialien behandelt, die auf allen Ebenen einer Nanostrukturierung unterzogen werden, von Technologien für keramische Materialien wie ferroelektrische Nanopulver, nanostrukturierte Keramiken und Dickschichten sowie magnetoelektrische Nanokomposit-Materialien bis hin zu freistehenden Nanoobjekten mit spezifischen Geometrien wie Nanodrähte und Nanoröhren auf verschiedenen Entwicklungsstufen. Grundlage des Buches ist die europäische Wissensplattform im Wissenschaftsbereich innerhalb der Aktion von COST (Europäische Zusammenarbeit in Wissenschaft und Technik) zu ein- und mehrphasigen Ferroika und Multiferroika mit begrenzten Geometrien (SIMUFER, Ref. MP0904). Die Autoren der Kapitelbeiträge wurden sorgfältig ausgewählt, haben allesamt ganz wesentlich zur Wissensbasis für das jeweilige Thema beigetragen und gehören vor allem zu den renommiertesten Wissenschaftlern des Fachgebiets.
Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications
Title | Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications PDF eBook |
Author | Hideo Kimura |
Publisher | Elsevier |
Pages | 254 |
Release | 2019-02-22 |
Genre | Technology & Engineering |
ISBN | 0128145005 |
Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications presents the latest information in the emerging field of multiferroic materials research, exploring applications in energy conversion and harvesting at the nanoscale. The book covers crystal and microstructure, ferroelectric, piezoelectric and multiferroic physical properties, along with their characterization. Special attention is given to the design and tailoring of ferroelectric, magnetic and multiferroic materials and their interaction among ferroics. The fundamentals of energy conversion are incorporated, along with the requirements of materials for this process. Finally, a range of applications is presented, demonstrating the progression from fundamentals to applied science. This essential resource describes the link between the basic physical properties of these materials and their applications in the field of energy harvest. It will be a useful resource for graduate students, early career researchers, academics and industry professionals working in areas related to energy conversion. - Bridges the gap between the fundamentals and applications of ferroelectric and multiferroic materials for energy harvesting - Demonstrates how a range of nanomaterials play an important role in the creation of efficient energy harvesting systems - Provides new solutions for the fabrication of electronic devices for various applications
Nanostructured Multiferroics
Title | Nanostructured Multiferroics PDF eBook |
Author | Raneesh Balakrishnan |
Publisher | John Wiley & Sons |
Pages | 274 |
Release | 2021-06-01 |
Genre | Technology & Engineering |
ISBN | 3527343202 |
Explore the state of the art in multiferroic materials with this cutting-edge resource Nanostructured Multiferroics delivers an overview of recent research developments in the area of nanostructured multiferroics, along with their preparation, characterization, and applications. Covering single-phase and composite multiferroics, nanomultiferroics, and multiferroic composites, the book explains their physical properties, the underlying physical principles, and the technology and application aspects of the materials, including energy harvesting and spintronics. With multiferroics undergoing a renaissance of renewed interest and development in the past few years, and with promising new breakthroughs in areas like superconductivity, spintronics, and quantum computing, Nanostructured Multiferroics offers both experienced scientists and young researchers inspirational and informative resources likely to spark ideas for further research. Along with chapters discussing topics such as the specific heat and magnetocaloric properties of manganite-based multiferroics for cryo-cooling applications and the multiferroic properties of barium-doped BiFeO3 particles, further topics are: * A comprehensive discussion about the physical properties of multiferroic nanocomposites * An exploration of the basic theory underpinning a variety of multiferroic interactions * An in-depth analysis of the engineering functionality in nanomultiferroics * An introduction to nanostructured multiferroics accompanied by discussions of their synthesis, characterization, and common applications * A treatment of multiferroic materials, as well as single-phase and composite multiferroics * An examination of the use of nanostructured multiferroics in the field of spintronics Perfect for materials scientists, Nanostructured Multiferroics will also earn a place in the libraries of solid-state physicists and chemists who seek to improve their understanding of the fundamentals of, and recent advances made in, multiferroics. The information contained within will inform anyone working in areas involving superconductivity, quantum computing, and spintronics.
Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications
Title | Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications PDF eBook |
Author | Hideo Kimura |
Publisher | Elsevier |
Pages | 0 |
Release | 2019-02-25 |
Genre | Technology & Engineering |
ISBN | 9780128144992 |
Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications presents the latest information in the emerging field of multiferroic materials research, exploring applications in energy conversion and harvesting at the nanoscale. The book covers crystal and microstructure, ferroelectric, piezoelectric and multiferroic physical properties, along with their characterization. Special attention is given to the design and tailoring of ferroelectric, magnetic and multiferroic materials and their interaction among ferroics. The fundamentals of energy conversion are incorporated, along with the requirements of materials for this process. Finally, a range of applications is presented, demonstrating the progression from fundamentals to applied science. This essential resource describes the link between the basic physical properties of these materials and their applications in the field of energy harvest. It will be a useful resource for graduate students, early career researchers, academics and industry professionals working in areas related to energy conversion.
Ferroelectric Domain Walls
Title | Ferroelectric Domain Walls PDF eBook |
Author | Jill Guyonnet |
Publisher | Springer Science & Business Media |
Pages | 167 |
Release | 2014-04-08 |
Genre | Science |
ISBN | 3319057502 |
Using the nano metric resolution of atomic force microscopy techniques, this work explores the rich fundamental physics and novel functionalities of domain walls in ferroelectric materials, the nano scale interfaces separating regions of differently oriented spontaneous polarization. Due to the local symmetry-breaking caused by the change in polarization, domain walls are found to possess an unexpected lateral piezoelectric response, even when this is symmetry-forbidden in the parent material. This has interesting potential applications in electromechanical devices based on ferroelectric domain patterning. Moreover, electrical conduction is shown to arise at domain walls in otherwise insulating lead zirconate titanate, the first such observation outside of multiferroic bismuth ferrite, due to the tendency of the walls to localize defects. The role of defects is then explored in the theoretical framework of disordered elastic interfaces possessing a characteristic roughness scaling and complex dynamic response. It is shown that the heterogeneous disorder landscape in ferroelectric thin films leads to a breakdown of the usual self-affine roughness, possibly related to strong pinning at individual defects. Finally, the roles of varying environmental conditions and defect densities in domain switching are explored and shown to be adequately modelled as a competition between screening effects and pinning.
Ferroelectrics
Title | Ferroelectrics PDF eBook |
Author | Ashim Kumar Bain |
Publisher | John Wiley & Sons |
Pages | 358 |
Release | 2017-01-27 |
Genre | Technology & Engineering |
ISBN | 3527805338 |
Combining both fundamental principles and real-life applications in a single volume, this book discusses the latest research results in ferroelectrics, including many new ferroelectric materials for the latest technologies, such as capacitors, transducers and memories. The first two chapters introduce dielectrics and microscopic materials properties, while the following chapter discusses pyroelectricity and piezoelectricity. The larger part of the text is devoted to ferroelectricity and ferroelectric ceramics, with not only their fundamentals but also applications discussed. The book concludes with a look at the future for laser printed materials and applications. With over 600 references to recent publications on piezoelectric and ferroelectric materials, this is an invaluable reference for physicists, materials scientists and engineers.