Nano-scale CMOS Analog Circuits
Title | Nano-scale CMOS Analog Circuits PDF eBook |
Author | Soumya Pandit |
Publisher | CRC Press |
Pages | 410 |
Release | 2018-09-03 |
Genre | Technology & Engineering |
ISBN | 1351831992 |
Reliability concerns and the limitations of process technology can sometimes restrict the innovation process involved in designing nano-scale analog circuits. The success of nano-scale analog circuit design requires repeat experimentation, correct analysis of the device physics, process technology, and adequate use of the knowledge database. Starting with the basics, Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design introduces the essential fundamental concepts for designing analog circuits with optimal performances. This book explains the links between the physics and technology of scaled MOS transistors and the design and simulation of nano-scale analog circuits. It also explores the development of structured computer-aided design (CAD) techniques for architecture-level and circuit-level design of analog circuits. The book outlines the general trends of technology scaling with respect to device geometry, process parameters, and supply voltage. It describes models and optimization techniques, as well as the compact modeling of scaled MOS transistors for VLSI circuit simulation. • Includes two learning-based methods: the artificial neural network (ANN) and the least-squares support vector machine (LS-SVM) method • Provides case studies demonstrating the practical use of these two methods • Explores circuit sizing and specification translation tasks • Introduces the particle swarm optimization technique and provides examples of sizing analog circuits • Discusses the advanced effects of scaled MOS transistors like narrow width effects, and vertical and lateral channel engineering Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design describes the models and CAD techniques, explores the physics of MOS transistors, and considers the design challenges involving statistical variations of process technology parameters and reliability constraints related to circuit design.
Nano-scale CMOS Analog Circuits
Title | Nano-scale CMOS Analog Circuits PDF eBook |
Author | Soumya Pandit |
Publisher | CRC Press |
Pages | 397 |
Release | 2018-09-03 |
Genre | Technology & Engineering |
ISBN | 1466564288 |
Reliability concerns and the limitations of process technology can sometimes restrict the innovation process involved in designing nano-scale analog circuits. The success of nano-scale analog circuit design requires repeat experimentation, correct analysis of the device physics, process technology, and adequate use of the knowledge database. Starting with the basics, Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design introduces the essential fundamental concepts for designing analog circuits with optimal performances. This book explains the links between the physics and technology of scaled MOS transistors and the design and simulation of nano-scale analog circuits. It also explores the development of structured computer-aided design (CAD) techniques for architecture-level and circuit-level design of analog circuits. The book outlines the general trends of technology scaling with respect to device geometry, process parameters, and supply voltage. It describes models and optimization techniques, as well as the compact modeling of scaled MOS transistors for VLSI circuit simulation. • Includes two learning-based methods: the artificial neural network (ANN) and the least-squares support vector machine (LS-SVM) method • Provides case studies demonstrating the practical use of these two methods • Explores circuit sizing and specification translation tasks • Introduces the particle swarm optimization technique and provides examples of sizing analog circuits • Discusses the advanced effects of scaled MOS transistors like narrow width effects, and vertical and lateral channel engineering Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design describes the models and CAD techniques, explores the physics of MOS transistors, and considers the design challenges involving statistical variations of process technology parameters and reliability constraints related to circuit design.
High-/Mixed-Voltage Analog and RF Circuit Techniques for Nanoscale CMOS
Title | High-/Mixed-Voltage Analog and RF Circuit Techniques for Nanoscale CMOS PDF eBook |
Author | Pui-In Mak |
Publisher | Springer Science & Business Media |
Pages | 161 |
Release | 2012-03-20 |
Genre | Technology & Engineering |
ISBN | 1441995382 |
This book presents high-/mixed-voltage analog and radio frequency (RF) circuit techniques for developing low-cost multistandard wireless receivers in nm-length CMOS processes. Key benefits of high-/mixed-voltage RF and analog CMOS circuits are explained, state-of-the-art examples are studied, and circuit solutions before and after voltage-conscious design are compared. Three real design examples are included, which demonstrate the feasibility of high-/mixed-voltage circuit techniques. Provides a valuable summary and real case studies of the state-of-the-art in high-/mixed-voltage circuits and systems; Includes novel high-/mixed-voltage analog and RF circuit techniques – from concept to practice; Describes the first high-voltage-enabled mobile-TVRF front-end in 90nm CMOS and the first mixed-voltage full-band mobile-TV Receiver in 65nm CMOS; Demonstrates the feasibility of high-/mixed-voltage circuit techniques with real design examples.
High-Speed Optical Receivers with Integrated Photodiode in Nanoscale CMOS
Title | High-Speed Optical Receivers with Integrated Photodiode in Nanoscale CMOS PDF eBook |
Author | Filip Tavernier |
Publisher | Springer Science & Business Media |
Pages | 231 |
Release | 2011-06-20 |
Genre | Technology & Engineering |
ISBN | 1441999256 |
This book describes the design of optical receivers that use the most economical integration technology, while enabling performance that is typically only found in very expensive devices. To achieve this, all necessary functionality, from light detection to digital output, is integrated on a single piece of silicon. All building blocks are thoroughly discussed, including photodiodes, transimpedance amplifiers, equalizers and post amplifiers.
Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies
Title | Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies PDF eBook |
Author | Joao Oliveira |
Publisher | Springer Science & Business Media |
Pages | 204 |
Release | 2012-01-06 |
Genre | Technology & Engineering |
ISBN | 1461416701 |
This book is dedicated to the analysis of parametric amplification with special emphasis on the MOS discrete-time implementation. This implementation is demonstrated by the presentation of several circuits where the MOS parametric amplifier cell is used: small gain amplifier, comparator with embedded pre-amplification, discrete-time mixer/IIR-Filter, and analog-to-digital converter (ADC). Experimental results are shown to validate the overall design technique.
Systematic Design of Analog CMOS Circuits
Title | Systematic Design of Analog CMOS Circuits PDF eBook |
Author | Paul G. A. Jespers |
Publisher | Cambridge University Press |
Pages | 340 |
Release | 2017-10-12 |
Genre | Technology & Engineering |
ISBN | 1108136737 |
Discover a fresh approach to efficient and insight-driven analog integrated circuit design in nanoscale-CMOS with this hands-on guide. Expert authors present a sizing methodology that employs SPICE-generated lookup tables, enabling close agreement between hand analysis and simulation. This enables the exploration of analog circuit tradeoffs using the gm/ID ratio as a central variable in script-based design flows, and eliminates time-consuming iterations in a circuit simulator. Supported by downloadable MATLAB code, and including over forty detailed worked examples, this book will provide professional analog circuit designers, researchers, and graduate students with the theoretical know-how and practical tools needed to acquire a systematic and re-use oriented design style for analog integrated circuits in modern CMOS.
Circuits at the Nanoscale
Title | Circuits at the Nanoscale PDF eBook |
Author | Krzysztof Iniewski |
Publisher | CRC Press |
Pages | 602 |
Release | 2018-10-08 |
Genre | Technology & Engineering |
ISBN | 1420070630 |
Circuits for Emerging Technologies Beyond CMOS New exciting opportunities are abounding in the field of body area networks, wireless communications, data networking, and optical imaging. In response to these developments, top-notch international experts in industry and academia present Circuits at the Nanoscale: Communications, Imaging, and Sensing. This volume, unique in both its scope and its focus, addresses the state-of-the-art in integrated circuit design in the context of emerging systems. A must for anyone serious about circuit design for future technologies, this book discusses emerging materials that can take system performance beyond standard CMOS. These include Silicon on Insulator (SOI), Silicon Germanium (SiGe), and Indium Phosphide (InP). Three-dimensional CMOS integration and co-integration with Microelectromechanical (MEMS) technology and radiation sensors are described as well. Topics in the book are divided into comprehensive sections on emerging design techniques, mixed-signal CMOS circuits, circuits for communications, and circuits for imaging and sensing. Dr. Krzysztof Iniewski is a director at CMOS Emerging Technologies, Inc., a consulting company in Vancouver, British Columbia. His current research interests are in VLSI ciruits for medical applications. He has published over 100 research papers in international journals and conferences, and he holds 18 international patents granted in the United States, Canada, France, Germany, and Japan. In this volume, he has assembled the contributions of over 60 world-reknown experts who are at the top of their field in the world of circuit design, advancing the bank of knowledge for all who work in this exciting and burgeoning area.