Principles of Nano-Optics
Title | Principles of Nano-Optics PDF eBook |
Author | Lukas Novotny |
Publisher | Cambridge University Press |
Pages | 583 |
Release | 2012-09-06 |
Genre | Science |
ISBN | 1107005469 |
Fully revised and in its second edition, this standard reference on nano-optics is ideal for graduate students and researchers alike.
Nano and Quantum Optics
Title | Nano and Quantum Optics PDF eBook |
Author | Ulrich Hohenester |
Publisher | Springer Nature |
Pages | 665 |
Release | 2019-12-18 |
Genre | Science |
ISBN | 303030504X |
This classroom-tested textbook is a modern primer on the rapidly developing field of quantum nano optics which investigates the optical properties of nanosized materials. The essentials of both classical and quantum optics are presented before embarking through a stimulating selection of further topics, such as various plasmonic phenomena, thermal effects, open quantum systems, and photon noise. Didactic and thorough in style, and requiring only basic knowledge of classical electrodynamics, the text provides all further physics background and additional mathematical and computational tools in a self-contained way. Numerous end-of-chapter exercises allow students to apply and test their understanding of the chapter topics and to refine their problem-solving techniques.
Nano-Optics
Title | Nano-Optics PDF eBook |
Author | Sabu Thomas |
Publisher | Elsevier |
Pages | 378 |
Release | 2020-07-06 |
Genre | Technology & Engineering |
ISBN | 0128183934 |
Nano-Optics: Fundamentals, Experimental Methods, and Applications offers insights into the fundamentals and industrial applications of nanoscale light-emitting materials and their composites. This book serves as a reference, offering an overview of existing research, with a particular focus on industrial applications. Nano-optics is the branch of nanoscience and nanotechnology that deals with interaction of light with nanoscale objects. This book explores the materials, structure, manufacturing techniques, and industrial applications of nano-optics. The applications discussed include healthcare, communication, astronomy, and satellites. - Explains the major manufacturing techniques for light-emitting nanoscale materials - Discusses how nanoscale optical materials are being used in a range of industrial applications - Assesses the challenges of using nano-optics in a mass-production context
Nano-Optics
Title | Nano-Optics PDF eBook |
Author | Satoshi Kawata |
Publisher | Springer |
Pages | 334 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 3540452737 |
A presentation of the most advanced application of optical near-field microscopy to studies of fine metallic structures and related surface plasmons.
Nano-optics and Near-field Optical Microscopy
Title | Nano-optics and Near-field Optical Microscopy PDF eBook |
Author | Anatoly V. Zayats |
Publisher | Artech House |
Pages | 379 |
Release | 2009 |
Genre | Science |
ISBN | 1596932848 |
"This groundbreaking book focuses on near-field microscopy which has opened up optical processes at the nanoscale for direct inspection. Further, it explores the emerging area of nano-optics which promises to make possible optical microscopy with true nanometer resolution. This frontline resource helps you achieve high resolution optical imaging of biological species and functional materials. You also find guidance in the imaging of optical device operation and new nanophotonics functionalities"--EBL.
Chiral Nanophotonics
Title | Chiral Nanophotonics PDF eBook |
Author | Martin Schäferling |
Publisher | Springer |
Pages | 170 |
Release | 2016-11-11 |
Genre | Science |
ISBN | 3319422642 |
This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry.
Diffractive Optics and Nanophotonics
Title | Diffractive Optics and Nanophotonics PDF eBook |
Author | Igor Minin |
Publisher | Springer |
Pages | 76 |
Release | 2015-10-29 |
Genre | Science |
ISBN | 3319242539 |
In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible. With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Terahertz frequencies (terajets) using 3D dielectric particles of arbitrary size (cuboids) is considered. A scheme to create a 2D “teraknife” using dielectric rods is also discussed. In the final chapter the successful adaptation of free-space 3D binary phase-reversal conical FZPs for operation on surface plasmon-polariton (SPP) waves demonstrates that analogues of Fourier diffractive components can be developed for in-plane SPP 3D optics. Review ing theory, modelling and experiment, this book will be a valuable resource for students and researchers working on nanophotonics and sub-wavelength focusing and imaging.