$n$-Harmonic Mappings between Annuli
Title | $n$-Harmonic Mappings between Annuli PDF eBook |
Author | Tadeusz Iwaniec |
Publisher | American Mathematical Soc. |
Pages | 120 |
Release | 2012 |
Genre | Mathematics |
ISBN | 0821853570 |
Iwaniec and Onninen (both mathematics, Syracuse U., US) address concrete questions regarding energy minimal deformations of annuli in Rn. One novelty of their approach is that they allow the mappings to slip freely along the boundaries of the domains, where it is most difficult to establish the existence, uniqueness, and invertibility properties of the extremal mappings. At the core of the matter, they say, is the underlying concept of free Lagrangians. After an introduction, they cover in turn principal radial n-harmonics, and the n-harmonic energy. There is no index. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).
An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings
Title | An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings PDF eBook |
Author | Frederick W. Gehring |
Publisher | American Mathematical Soc. |
Pages | 442 |
Release | 2017-05-03 |
Genre | Mathematics |
ISBN | 0821843605 |
This book offers a modern, up-to-date introduction to quasiconformal mappings from an explicitly geometric perspective, emphasizing both the extensive developments in mapping theory during the past few decades and the remarkable applications of geometric function theory to other fields, including dynamical systems, Kleinian groups, geometric topology, differential geometry, and geometric group theory. It is a careful and detailed introduction to the higher-dimensional theory of quasiconformal mappings from the geometric viewpoint, based primarily on the technique of the conformal modulus of a curve family. Notably, the final chapter describes the application of quasiconformal mapping theory to Mostow's celebrated rigidity theorem in its original context with all the necessary background. This book will be suitable as a textbook for graduate students and researchers interested in beginning to work on mapping theory problems or learning the basics of the geometric approach to quasiconformal mappings. Only a basic background in multidimensional real analysis is assumed.
Complex Analysis and Dynamical Systems III
Title | Complex Analysis and Dynamical Systems III PDF eBook |
Author | Mark Lʹvovich Agranovskiĭ |
Publisher | American Mathematical Soc. |
Pages | 482 |
Release | 2008 |
Genre | Mathematics |
ISBN | 0821841505 |
The papers in this volume cover a wide variety of topics in the geometric theory of functions of one and several complex variables, including univalent functions, conformal and quasiconformal mappings, minimal surfaces, and dynamics in infinite-dimensional spaces. In addition, there are several articles dealing with various aspects of approximation theory and partial differential equations. Taken together, the articles collected here provide the reader with a panorama of activity in complex analysis, drawn by a number of leading figures in the field.
Modular Branching Rules for Projective Representations of Symmetric Groups and Lowering Operators for the Supergroup $Q(n)$
Title | Modular Branching Rules for Projective Representations of Symmetric Groups and Lowering Operators for the Supergroup $Q(n)$ PDF eBook |
Author | Aleksandr Sergeevich Kleshchëv |
Publisher | American Mathematical Soc. |
Pages | 148 |
Release | 2012 |
Genre | Mathematics |
ISBN | 0821874314 |
There are two approaches to projective representation theory of symmetric and alternating groups, which are powerful enough to work for modular representations. One is based on Sergeev duality, which connects projective representation theory of the symmetric group and representation theory of the algebraic supergroup $Q(n)$ via appropriate Schur (super)algebras and Schur functors. The second approach follows the work of Grojnowski for classical affine and cyclotomic Hecke algebras and connects projective representation theory of symmetric groups in characteristic $p$ to the crystal graph of the basic module of the twisted affine Kac-Moody algebra of type $A_{p-1}^{(2)}$. The goal of this work is to connect the two approaches mentioned above and to obtain new branching results for projective representations of symmetric groups.
The Kohn-Sham Equation for Deformed Crystals
Title | The Kohn-Sham Equation for Deformed Crystals PDF eBook |
Author | Weinan E |
Publisher | American Mathematical Soc. |
Pages | 109 |
Release | 2013-01-25 |
Genre | Mathematics |
ISBN | 0821875604 |
The solution to the Kohn-Sham equation in the density functional theory of the quantum many-body problem is studied in the context of the electronic structure of smoothly deformed macroscopic crystals. An analog of the classical Cauchy-Born rule for crystal lattices is established for the electronic structure of the deformed crystal under the following physical conditions: (1) the band structure of the undeformed crystal has a gap, i.e. the crystal is an insulator, (2) the charge density waves are stable, and (3) the macroscopic dielectric tensor is positive definite. The effective equation governing the piezoelectric effect of a material is rigorously derived. Along the way, the authors also establish a number of fundamental properties of the Kohn-Sham map.
Pseudo-Differential Operators with Discontinuous Symbols: Widom's Conjecture
Title | Pseudo-Differential Operators with Discontinuous Symbols: Widom's Conjecture PDF eBook |
Author | Aleksandr Vladimirovich Sobolev |
Publisher | American Mathematical Soc. |
Pages | 116 |
Release | 2013-02-26 |
Genre | Mathematics |
ISBN | 0821884875 |
Relying on the known two-term quasiclassical asymptotic formula for the trace of the function $f(A)$ of a Wiener-Hopf type operator $A$ in dimension one, in 1982 H. Widom conjectured a multi-dimensional generalization of that formula for a pseudo-differential operator $A$ with a symbol $a(\mathbf{x}, \boldsymbol{\xi})$ having jump discontinuities in both variables. In 1990 he proved the conjecture for the special case when the jump in any of the two variables occurs on a hyperplane. The present paper provides a proof of Widom's Conjecture under the assumption that the symbol has jumps in both variables on arbitrary smooth bounded surfaces.
Potential Wadge Classes
Title | Potential Wadge Classes PDF eBook |
Author | Dominique Lecomte |
Publisher | American Mathematical Soc. |
Pages | 95 |
Release | 2013-01-25 |
Genre | Mathematics |
ISBN | 0821875574 |
Let $\bf\Gamma$ be a Borel class, or a Wadge class of Borel sets, and $2\!\leq\! d\!\leq\!\omega$ be a cardinal. A Borel subset $B$ of ${\mathbb R}^d$ is potentially in $\bf\Gamma$ if there is a finer Polish topology on $\mathbb R$ such that $B$ is in $\bf\Gamma$ when ${\mathbb R}^d$ is equipped with the new product topology. The author provides a way to recognize the sets potentially in $\bf\Gamma$ and applies this to the classes of graphs (oriented or not), quasi-orders and partial orders.