POSTGRESQL FOR JAVA GUI: Database and Image Processing

POSTGRESQL FOR JAVA GUI: Database and Image Processing
Title POSTGRESQL FOR JAVA GUI: Database and Image Processing PDF eBook
Author Vivian Siahaan
Publisher SPARTA PUBLISHING
Pages 340
Release 2019-08-27
Genre Computers
ISBN

Download POSTGRESQL FOR JAVA GUI: Database and Image Processing Book in PDF, Epub and Kindle

In this book, you will learn how to build from scratch a criminal records management database system using Java/PostgreSQL. All Java code for digital image processing in this book is Native Java. Intentionally not to rely on external libraries, so that readers know in detail the process of extracting digital images from scratch in Java. There are only three external libraries used in this book: Connector / J to facilitate Java to MySQL connections, JCalendar to display calendar controls, and JFreeChart to display graphics. Digital image techniques to extract image features used in this book are grascaling, sharpening, invertering, blurring, dilation, erosion, closing, opening, vertical prewitt, horizontal prewitt, Laplacian, horizontal sobel, and vertical sobel. For readers, you can develop it to store other advanced image features based on descriptors such as SIFT and others for developing descriptor based matching. In the first chapter, you will learn: How to install NetBeans, JDK 11, and the PostgreSQL connector; How to integrate external libraries into projects; How the basic PostgreSQL commands are used; How to query statements to create databases, create tables, fill tables, and manipulate table contents is done.In the first chapter, you will learn: How to install NetBeans, JDK 11, and the PostgreSQL connector; How to integrate external libraries into projects; How the basic PostgreSQL commands are used; How to query statements to create databases, create tables, fill tables, and manipulate table contents is done. In the second chapter, you will learn querying data from the postgresql using jdbc including establishing a database connection, creating a statement object, executing the query, processing the resultset object, querying data using a statement that returns multiple rows, querying data using a statement that has parameters, inserting data into a table using jdbc, updating data in postgresql database using jdbc, calling postgresql stored function using jdbc, deleting data from a postgresql table using jdbc, and postgresql jdbc transaction. In third chapter, you will be taught how to extract image features, utilizing BufferedImage class, in Java GUI. In the fourth chapter, you will be taught how to create Crime database and its tables. In the fifth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Suspect table data. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. In the sixth chapter, you will be taught to create Java GUI to view, edit, insert, and delete Feature_Extraction table data. This table has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. All six fields (except keys) will have a BLOB data type, so that the image of the feature will be directly saved into this table. In the seventh chapter, you will add two tables: Police_Station and Investigator. These two tables will later be joined to Suspect table through another table, File_Case, which will be built in the seventh chapter. The Police_Station has six columns: police_station_id (primary key), location, city, province, telephone, and photo. The Investigator has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. Here, you will design a Java GUI to display, edit, fill, and delete data in both tables. In the eigthth chapter, you will add two tables: Victim and File_Case. The File_Case table will connect four other tables: Suspect, Police_Station, Investigator and Victim. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The File_Case has seven columns: file_case_id (primary key), suspect_id (foreign key), police_station_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. Here, you will also design a Java GUI to display, edit, fill, and delete data in both tables. Finally, this book is hopefully useful for you.

LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI

LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI
Title LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI PDF eBook
Author Vivian Siahaan
Publisher BALIGE PUBLISHING
Pages 372
Release 2023-06-14
Genre Technology & Engineering
ISBN

Download LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI Book in PDF, Epub and Kindle

In this book, you will learn how to use OpenCV, NumPy library and other libraries to perform signal processing, image processing, object detection, and feature extraction with Python GUI (PyQt). You will learn how to filter signals, detect edges and segments, and denoise images with PyQt. You will also learn how to detect objects (face, eye, and mouth) using Haar Cascades and how to detect features on images using Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), and Features from Accelerated Segment Test (FAST). In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. In Chapter 4, you will learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, and Tutorial Steps To Implement Image Denoising. In Chapter 5, you will learn: Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, and Tutorial Steps To Extract Detected Objects. In Chapter 6, you will learn: Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). You can download the XML files from https://viviansiahaan.blogspot.com/2023/06/learn-from-scratch-signal-and-image.html.

DATA ANALYSIS USING JDBC AND SQLITE WITH OBJECT-ORIENTED APPROACH AND APACHE NETBEANS IDE

DATA ANALYSIS USING JDBC AND SQLITE WITH OBJECT-ORIENTED APPROACH AND APACHE NETBEANS IDE
Title DATA ANALYSIS USING JDBC AND SQLITE WITH OBJECT-ORIENTED APPROACH AND APACHE NETBEANS IDE PDF eBook
Author Vivian Siahaan
Publisher BALIGE PUBLISHING
Pages 665
Release 2023-04-12
Genre Computers
ISBN

Download DATA ANALYSIS USING JDBC AND SQLITE WITH OBJECT-ORIENTED APPROACH AND APACHE NETBEANS IDE Book in PDF, Epub and Kindle

In this project, you will use SQLite version of Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. You can download the sample database from https://viviansiahaan.blogspot.com/2023/04/data-analysis-using-jdbc-and-sqlite.html. In this project, you will design the form for every table and you will plot: the territory distribution by region; the employee distributions based on city, country, title, and region; the employee distributions based on birth date, hire date, and employee name; the employee distributions based on city, country, territory, and region; the three supplier distributions based on city, region, and country; the product distributions based on city, region, country, categorized unit price, categorized units in stock, and categorized units on order; the customer distributions based on city, region, and country; the order and freight distributions based on year, month, and week; the order and freight distributions based on day, quarter, and ship country; the order and freight distributions based on ship region, ship city, and ship name; the order and freight distributions based on shipper company, customer company, and customer city; the order and freight distributions based on customer country, employee name, and employee title; the sales distributions based on year, month, week, day, quarter, and ship country; the sales distributions based on ship region, ship city, ship name, shipper company, customer company, and customer city; the sales distributions based on customer region, customer country, employee name, employee title, employee city, and employee country; the sales distributions based on product name, category name, supplier company, supplier city, supplier region, and supplier country.

DATA ANALYSIS USING JDBC AND SQL SERVER WITH OBJECT-ORIENTED APPROACH AND APACHE NETBEANS IDE

DATA ANALYSIS USING JDBC AND SQL SERVER WITH OBJECT-ORIENTED APPROACH AND APACHE NETBEANS IDE
Title DATA ANALYSIS USING JDBC AND SQL SERVER WITH OBJECT-ORIENTED APPROACH AND APACHE NETBEANS IDE PDF eBook
Author Vivian Siahaan
Publisher BALIGE PUBLISHING
Pages 857
Release 2023-05-24
Genre Computers
ISBN

Download DATA ANALYSIS USING JDBC AND SQL SERVER WITH OBJECT-ORIENTED APPROACH AND APACHE NETBEANS IDE Book in PDF, Epub and Kindle

This book is SQL SERVER version of our previous book titled “DATA ANALYSIS USING JDBC AND MYSQL WITH OBJECT-ORIENTED APPROACH AND APACHE NETBEANS IDE”. In this project, you will use the SQL VERSION version of Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. You can download the sample database from https://viviansiahaan.blogspot.com/2023/05/data-analysis-using-jdbc-and-sql-server.html. In this project, you will design the form for every table and you will plot: the territory distribution by region; the employee distributions based on city, country, title, and region; the employee distributions based on birth date, hire date, and employee name; the employee distributions based on city, country, territory, and region; the three supplier distributions based on city, region, and country; the product distributions based on city, region, country, categorized unit price, categorized units in stock, and categorized units on order; the customer distributions based on city, region, and country; the order and freight distributions based on year, month, and week; the order and freight distributions based on day, quarter, and ship country; the order and freight distributions based on ship region, ship city, and ship name; the order and freight distributions based on shipper company, customer company, and customer city; the order and freight distributions based on customer country, employee name, and employee title; the sales distributions based on year, month, week, day, quarter, and ship country; the sales distributions based on ship region, ship city, ship name, shipper company, customer company, and customer city; the sales distributions based on customer region, customer country, employee name, employee title, employee city, and employee country; the sales distributions based on product name, category name, supplier company, supplier city, supplier region, and supplier country.

SIX BOOKS IN ONE: Classification, Prediction, and Sentiment Analysis Using Machine Learning and Deep Learning with Python GUI

SIX BOOKS IN ONE: Classification, Prediction, and Sentiment Analysis Using Machine Learning and Deep Learning with Python GUI
Title SIX BOOKS IN ONE: Classification, Prediction, and Sentiment Analysis Using Machine Learning and Deep Learning with Python GUI PDF eBook
Author Vivian Siahaan
Publisher BALIGE PUBLISHING
Pages 1165
Release 2022-04-11
Genre Computers
ISBN

Download SIX BOOKS IN ONE: Classification, Prediction, and Sentiment Analysis Using Machine Learning and Deep Learning with Python GUI Book in PDF, Epub and Kindle

Book 1: BANK LOAN STATUS CLASSIFICATION AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project consists of more than 100,000 customers mentioning their loan status, current loan amount, monthly debt, etc. There are 19 features in the dataset. The dataset attributes are as follows: Loan ID, Customer ID, Loan Status, Current Loan Amount, Term, Credit Score, Annual Income, Years in current job, Home Ownership, Purpose, Monthly Debt, Years of Credit History, Months since last delinquent, Number of Open Accounts, Number of Credit Problems, Current Credit Balance, Maximum Open Credit, Bankruptcies, and Tax Liens. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 2: OPINION MINING AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI Opinion mining (sometimes known as sentiment analysis or emotion AI) refers to the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information. This dataset was created for the Paper 'From Group to Individual Labels using Deep Features', Kotzias et. al,. KDD 2015. It contains sentences labelled with a positive or negative sentiment. Score is either 1 (for positive) or 0 (for negative). The sentences come from three different websites/fields: imdb.com, amazon.com, and yelp.com. For each website, there exist 500 positive and 500 negative sentences. Those were selected randomly for larger datasets of reviews. Amazon: contains reviews and scores for products sold on amazon.com in the cell phones and accessories category, and is part of the dataset collected by McAuley and Leskovec. Scores are on an integer scale from 1 to 5. Reviews considered with a score of 4 and 5 to be positive, and scores of 1 and 2 to be negative. The data is randomly partitioned into two halves of 50%, one for training and one for testing, with 35,000 documents in each set. IMDb: refers to the IMDb movie review sentiment dataset originally introduced by Maas et al. as a benchmark for sentiment analysis. This dataset contains a total of 100,000 movie reviews posted on imdb.com. There are 50,000 unlabeled reviews and the remaining 50,000 are divided into a set of 25,000 reviews for training and 25,000 reviews for testing. Each of the labeled reviews has a binary sentiment label, either positive or negative. Yelp: refers to the dataset from the Yelp dataset challenge from which we extracted the restaurant reviews. Scores are on an integer scale from 1 to 5. Reviews considered with scores 4 and 5 to be positive, and 1 and 2 to be negative. The data is randomly generated a 50-50 training and testing split, which led to approximately 300,000 documents for each set. Sentences: for each of the datasets above, labels are extracted and manually 1000 sentences are manually labeled from the test set, with 50% positive sentiment and 50% negative sentiment. These sentences are only used to evaluate our instance-level classifier for each dataset3. They are not used for model training, to maintain consistency with our overall goal of learning at a group level and predicting at the instance level. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 3: EMOTION PREDICTION FROM TEXT USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI In the dataset used in this project, there are two columns, Text and Emotion. Quite self-explanatory. The Emotion column has various categories ranging from happiness to sadness to love and fear. You will build and implement machine learning and deep learning models which can identify what words denote what emotion. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 4: HATE SPEECH DETECTION AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI The objective of this task is to detect hate speech in tweets. For the sake of simplicity, a tweet contains hate speech if it has a racist or sexist sentiment associated with it. So, the task is to classify racist or sexist tweets from other tweets. Formally, given a training sample of tweets and labels, where label '1' denotes the tweet is racist/sexist and label '0' denotes the tweet is not racist/sexist, the objective is to predict the labels on the test dataset. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, LSTM, and CNN. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 5: TRAVEL REVIEW RATING CLASSIFICATION AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project has been sourced from the Machine Learning Repository of University of California, Irvine (UC Irvine): Travel Review Ratings Data Set. This dataset is populated by capturing user ratings from Google reviews. Reviews on attractions from 24 categories across Europe are considered. Google user rating ranges from 1 to 5 and average user rating per category is calculated. The attributes in the dataset are as follows: Attribute 1 : Unique user id; Attribute 2 : Average ratings on churches; Attribute 3 : Average ratings on resorts; Attribute 4 : Average ratings on beaches; Attribute 5 : Average ratings on parks; Attribute 6 : Average ratings on theatres; Attribute 7 : Average ratings on museums; Attribute 8 : Average ratings on malls; Attribute 9 : Average ratings on zoo; Attribute 10 : Average ratings on restaurants; Attribute 11 : Average ratings on pubs/bars; Attribute 12 : Average ratings on local services; Attribute 13 : Average ratings on burger/pizza shops; Attribute 14 : Average ratings on hotels/other lodgings; Attribute 15 : Average ratings on juice bars; Attribute 16 : Average ratings on art galleries; Attribute 17 : Average ratings on dance clubs; Attribute 18 : Average ratings on swimming pools; Attribute 19 : Average ratings on gyms; Attribute 20 : Average ratings on bakeries; Attribute 21 : Average ratings on beauty & spas; Attribute 22 : Average ratings on cafes; Attribute 23 : Average ratings on view points; Attribute 24 : Average ratings on monuments; and Attribute 25 : Average ratings on gardens. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. Book 6: ONLINE RETAIL CLUSTERING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project is a transnational dataset which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers. You will be using the online retail transnational dataset to build a RFM clustering and choose the best set of customers which the company should target. In this project, you will perform Cohort analysis and RFM analysis. You will also perform clustering using K-Means to get 5 clusters. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI

Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI
Title Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI PDF eBook
Author Vivian Siahaan
Publisher BALIGE PUBLISHING
Pages 211
Release 2023-06-21
Genre Computers
ISBN

Download Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI Book in PDF, Epub and Kindle

In this book, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). Here's an overview of the steps involved in classifying monkey species using the 10 Monkey Species dataset: Dataset Preparation: Download the 10 Monkey Species dataset from Kaggle and extract the files. The dataset should consist of separate folders for each monkey species, with corresponding images.; Load and Preprocess Images: Use libraries such as OpenCV to load the images from the dataset. Resize the images to a consistent size (e.g., 224x224 pixels) to ensure uniformity.; Split the Dataset: Divide the dataset into training and testing sets. Typically, an 80:20 or 70:30 split is used, where the larger portion is used for training and the smaller portion for testing the model's performance.; Label Encoding: Encode the categorical labels (monkey species) into numeric form. This step is necessary to train a machine learning model, as most algorithms expect numerical inputs.; Feature Extraction: Extract meaningful features from the images using techniques like deep learning or image processing algorithms. This step helps in representing the images in a format that the machine learning model can understand.; Model Training: Use libraries like TensorFlow and Keras to train a machine learning model on the preprocessed data. Choose an appropriate model architecture, in this case, MobileNetV2.; Model Evaluation: Evaluate the trained model on the testing set to assess its performance. Metrics like accuracy, precision, recall, and F1-score can be used to evaluate the model's classification performance.; Predictions: Use the trained model to make predictions on new, unseen images. Pass the images through the trained model and obtain the predicted labels for the monkey species. In chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). Here's the outline of the steps: Step 1: Dataset Preparation: Download the rock-paper-scissors dataset from Kaggle by visiting the provided link and clicking on the "Download" button. Save the dataset to a local directory on your machine. Extract the downloaded dataset to a suitable location. This will create a folder containing the images for rock, paper, and scissors.; Step 2: Data Preprocessing: Import the required libraries: TensorFlow, Keras, NumPy, OpenCV, and Pandas. Load the dataset using OpenCV: Iterate through the image files in the dataset directory and use OpenCV's cv2.imread() function to load each image. You can specify the image's file extension (e.g., PNG) and directory path. Preprocess the images: Resize the loaded images to a consistent size using OpenCV's cv2.resize() function. You may choose a specific width and height suitable for your model. Prepare the labels: Create a list or array to store the corresponding labels for each image (rock, paper, or scissors). This can be done based on the file naming convention or by mapping images to their respective labels using a dictionary.; Step 3: Model Training: Create a convolutional neural network (CNN) model using Keras: Define a CNN architecture using Keras' Sequential model or functional API. This typically consists of convolutional layers, pooling layers, and dense layers. Compile the model: Specify the loss function (e.g., categorical cross-entropy) and optimizer (e.g., Adam) using Keras' compile() function. You can also define additional metrics to evaluate the model's performance. Train the model: Use Keras' fit() function to train the model on the preprocessed dataset. Specify the training data, labels, batch size, number of epochs, and validation data if available. This will optimize the model's weights based on the provided dataset. Save the trained model: Once the model training is complete, you can save the trained model to disk using Keras' save() or save_weights() function. This allows you to load the model later for predictions or further training.; Step 4: Model Evaluation: Evaluate the trained model: Use Keras' evaluate() function to assess the model's performance on a separate testing dataset. Provide the testing data and labels to calculate metrics such as accuracy, precision, recall, and F1 score. This will help you understand how well the model generalizes to new, unseen data. Analyze the model's performance: Interpret the evaluation metrics and analyze any potential areas of improvement. You can also visualize the confusion matrix or classification report to gain more insights into the model's predictions.; Step 5: Prediction: Use the trained model for predictions: Load the saved model using Keras' load_model() function. Then, pass new, unseen images through the model to obtain predictions. Preprocess these images in the same way as the training images (resize, normalize, etc.). Visualize and interpret predictions: Display the predicted labels alongside the corresponding images to see how well the model performs. You can use libraries like Matplotlib or OpenCV to show the images and their predicted labels. Additionally, you can calculate the accuracy of the model's predictions on the new dataset. In chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify airplane, car, and ship using Multiclass-image-dataset-airplane-car-ship dataset provided by Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar). Here are the outline steps: Import the required libraries: TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy. Load and preprocess the dataset: Read the images from the dataset folder. Resize the images to a fixed size. Store the images and corresponding labels.; Split the dataset into training and testing sets: Split the data and labels into training and testing sets using a specified ratio.; Encode the labels: Convert the categorical labels into numerical format. Perform one-hot encoding on the labels.; Build MobileNetV2 model using Keras: Create a sequential model. Add convolutional layers with activation functions. Add pooling layers for downsampling. Flatten the output and add dense layers. Set the output layer with softmax activation.; Compile and train the model: Compile the model with an optimizer and loss function. Train the model using the training data and labels. Specify the number of epochs and batch size.; Evaluate the model: Evaluate the trained model using the testing data and labels. Calculate the accuracy of the model.; Make predictions on new images: Load and preprocess a new image. Use the trained model to predict the label of the new image. Convert the predicted label from numerical format to categorical.

Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI

Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI
Title Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI PDF eBook
Author Vivian Siahaan
Publisher BALIGE PUBLISHING
Pages 210
Release 2023-06-20
Genre Computers
ISBN

Download Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI Book in PDF, Epub and Kindle

In this book, implement deep learning on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). Here's an overview of the steps involved in detecting face masks using the Face Mask Detection Dataset: Import the necessary libraries: Import the required libraries like TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, and NumPy.; Load and preprocess the dataset: Load the dataset and perform any necessary preprocessing steps, such as resizing images and converting labels into numeric representations.; Split the dataset: Split the dataset into training and testing sets using the train_test_split function from Scikit-Learn. This will allow us to evaluate the model's performance on unseen data.; Data augmentation (optional): Apply data augmentation techniques to artificially increase the size and diversity of the training set. Techniques like rotation, zooming, and flipping can help improve the model's generalization.; Build the model: Create a Convolutional Neural Network (CNN) model using TensorFlow and Keras. Design the architecture of the model, including the number and type of layers.; Compile the model: Compile the model by specifying the loss function, optimizer, and evaluation metrics. This prepares the model for training. Train the model: Train the model on the training dataset. Adjust the hyperparameters, such as the learning rate and number of epochs, to achieve optimal performance.; Evaluate the model: Evaluate the trained model on the testing dataset to assess its performance. Calculate metrics such as accuracy, precision, recall, and F1 score.; Make predictions: Use the trained model to make predictions on new images or video streams. Apply the face mask detection algorithm to identify whether a person is wearing a mask or not.; Visualize the results: Visualize the predictions by overlaying bounding boxes or markers on the images or video frames to indicate the presence or absence of face masks. In chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). To classify weather using the Multi-class Weather Dataset from Kaggle, you can follow these general steps: Load the dataset: Use libraries like Pandas or NumPy to load the dataset into memory. Explore the dataset to understand its structure and the available features.; Preprocess the data: Perform necessary preprocessing steps such as data cleaning, handling missing values, and feature engineering. This may include resizing images (if the dataset contains images) or encoding categorical variables.; Split the data: Split the dataset into training and testing sets. The training set will be used to train the model, and the testing set will be used for evaluating its performance.; Build a model: Utilize TensorFlow and Keras to define a suitable model architecture for weather classification. The choice of model depends on the type of data you have. For image data, convolutional neural networks (CNNs) often work well.; Train the model: Train the model using the training data. Use appropriate training techniques like gradient descent and backpropagation to optimize the model's weights.; Evaluate the model: Evaluate the trained model's performance using the testing data. Calculate metrics such as accuracy, precision, recall, or F1-score to assess how well the model performs.; Fine-tune the model: If the model's performance is not satisfactory, you can experiment with different hyperparameters, architectures, or regularization techniques to improve its performance. This process is called model tuning.; Make predictions: Once you are satisfied with the model's performance, you can use it to make predictions on new, unseen data. Provide the necessary input (e.g., an image or weather features) to the trained model, and it will predict the corresponding weather class. In chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize flower using Flowers Recognition dataset provided by Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). Here are the general steps involved in recognizing flowers: Data Preparation: Download the Flowers Recognition dataset from Kaggle and extract the contents. Import the required libraries and define the dataset path and image dimensions.; Loading and Preprocessing the Data: Load the images and their corresponding labels from the dataset. Resize the images to a specific dimension. Perform label encoding on the flower labels and split the data into training and testing sets. Normalize the pixel values of the images.; Building the Model: Define the architecture of your model using TensorFlow's Keras API. You can choose from various neural network architectures such as CNNs, ResNet, or InceptionNet. The model architecture should be designed to handle image inputs and output the predicted flower class..; Compiling and Training the Model: Compile the model by specifying the loss function, optimizer, and evaluation metrics. Common choices include categorical cross-entropy loss and the Adam optimizer. Train the model using the training set and validate it using the testing set. Adjust the hyperparameters, such as the learning rate and number of epochs, to improve performance.; Model Evaluation: Evaluate the trained model on the testing set to measure its performance. Calculate metrics such as accuracy, precision, recall, and F1-score to assess how well the model is recognizing flower classes.; Prediction: Use the trained model to predict the flower class for new images. Load and preprocess the new images in a similar way to the training data. Pass the preprocessed images through the trained model and obtain the predicted flower class labels.; Further Improvements: If the model's performance is not satisfactory, consider experimenting with different architectures, hyperparameters, or techniques such as data augmentation or transfer learning. Fine-tuning the model or using ensembles of models can also improve accuracy.