Multivariate Statistical Simulation
Title | Multivariate Statistical Simulation PDF eBook |
Author | Mark E. Johnson |
Publisher | John Wiley & Sons |
Pages | 248 |
Release | 2013-11-11 |
Genre | Mathematics |
ISBN | 1118150732 |
Provides state-of-the-art coverage for the researcher confronted with designing and executing a simulation study using continuous multivariate distributions. Concise writing style makes the book accessible to a wide audience. Well-known multivariate distributions are described, emphasizing a few representative cases from each distribution. Coverage includes Pearson Types II and VII elliptically contoured distributions, Khintchine distributions, and the unifying class for the Burr, Pareto, and logistic distributions. Extensively illustrated--the figures are unique, attractive, and reveal very nicely what distributions ``look like.'' Contains an extensive and up-to-date bibliography culled from journals in statistics, operations research, mathematics, and computer science.
Statistical Simulation
Title | Statistical Simulation PDF eBook |
Author | Todd C. Headrick |
Publisher | CRC Press |
Pages | 176 |
Release | 2009-12-08 |
Genre | Mathematics |
ISBN | 1420064916 |
Although power method polynomials based on the standard normal distributions have been used in many different contexts for the past 30 years, it was not until recently that the probability density function (pdf) and cumulative distribution function (cdf) were derived and made available. Focusing on both univariate and multivariate nonnormal data ge
Simulating Data with SAS
Title | Simulating Data with SAS PDF eBook |
Author | Rick Wicklin |
Publisher | SAS Institute |
Pages | 363 |
Release | 2013 |
Genre | Computers |
ISBN | 1612903320 |
Data simulation is a fundamental technique in statistical programming and research. Rick Wicklin's Simulating Data with SAS brings together the most useful algorithms and the best programming techniques for efficient data simulation in an accessible how-to book for practicing statisticians and statistical programmers. This book discusses in detail how to simulate data from common univariate and multivariate distributions, and how to use simulation to evaluate statistical techniques. It also covers simulating correlated data, data for regression models, spatial data, and data with given moments. It provides tips and techniques for beginning programmers, and offers libraries of functions for advanced practitioners. As the first book devoted to simulating data across a range of statistical applications, Simulating Data with SAS is an essential tool for programmers, analysts, researchers, and students who use SAS software. This book is part of the SAS Press program.
An Introduction to Applied Multivariate Analysis with R
Title | An Introduction to Applied Multivariate Analysis with R PDF eBook |
Author | Brian Everitt |
Publisher | Springer Science & Business Media |
Pages | 284 |
Release | 2011-04-23 |
Genre | Mathematics |
ISBN | 1441996508 |
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Handbook of Applied Multivariate Statistics and Mathematical Modeling
Title | Handbook of Applied Multivariate Statistics and Mathematical Modeling PDF eBook |
Author | Howard E.A. Tinsley |
Publisher | Academic Press |
Pages | 751 |
Release | 2000-05-22 |
Genre | Mathematics |
ISBN | 0080533566 |
Multivariate statistics and mathematical models provide flexible and powerful tools essential in most disciplines. Nevertheless, many practicing researchers lack an adequate knowledge of these techniques, or did once know the techniques, but have not been able to keep abreast of new developments. The Handbook of Applied Multivariate Statistics and Mathematical Modeling explains the appropriate uses of multivariate procedures and mathematical modeling techniques, and prescribe practices that enable applied researchers to use these procedures effectively without needing to concern themselves with the mathematical basis. The Handbook emphasizes using models and statistics as tools. The objective of the book is to inform readers about which tool to use to accomplish which task. Each chapter begins with a discussion of what kinds of questions a particular technique can and cannot answer. As multivariate statistics and modeling techniques are useful across disciplines, these examples include issues of concern in biological and social sciences as well as the humanities.
Simulation
Title | Simulation PDF eBook |
Author | Sheldon M. Ross |
Publisher | Academic Press |
Pages | 326 |
Release | 2012-10-22 |
Genre | Computers |
ISBN | 0124158250 |
"In formulating a stochastic model to describe a real phenomenon, it used to be that one compromised between choosing a model that is a realistic replica of the actual situation and choosing one whose mathematical analysis is tractable. That is, there did not seem to be any payoff in choosing a model that faithfully conformed to the phenomenon under study if it were not possible to mathematically analyze that model. Similar considerations have led to the concentration on asymptotic or steady-state results as opposed to the more useful ones on transient time. However, the relatively recent advent of fast and inexpensive computational power has opened up another approach--namely, to try to model the phenomenon as faithfully as possible and then to rely on a simulation study to analyze it"--
Monte-Carlo Simulation-Based Statistical Modeling
Title | Monte-Carlo Simulation-Based Statistical Modeling PDF eBook |
Author | Ding-Geng (Din) Chen |
Publisher | Springer |
Pages | 440 |
Release | 2017-02-01 |
Genre | Medical |
ISBN | 9811033072 |
This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.