Generalized Linear Models and Extensions, Second Edition
Title | Generalized Linear Models and Extensions, Second Edition PDF eBook |
Author | James W. Hardin |
Publisher | Stata Press |
Pages | 413 |
Release | 2007 |
Genre | Computers |
ISBN | 1597180149 |
Deftly balancing theory and application, this book stands out in its coverage of the derivation of the GLM families and their foremost links. This edition has new sections on discrete response models, including zero-truncated, zero-inflated, censored, and hurdle count models, as well as heterogeneous negative binomial, and more.
Handbook of Latent Variable and Related Models
Title | Handbook of Latent Variable and Related Models PDF eBook |
Author | |
Publisher | Elsevier |
Pages | 458 |
Release | 2011-08-11 |
Genre | Mathematics |
ISBN | 0080471269 |
This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.
Multivariate Generalized Linear Mixed Models Using R
Title | Multivariate Generalized Linear Mixed Models Using R PDF eBook |
Author | Damon Mark Berridge |
Publisher | CRC Press |
Pages | 284 |
Release | 2011-04-25 |
Genre | Mathematics |
ISBN | 1439813272 |
Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R.A Un
Applying Generalized Linear Models
Title | Applying Generalized Linear Models PDF eBook |
Author | James K. Lindsey |
Publisher | Springer Science & Business Media |
Pages | 265 |
Release | 2008-01-15 |
Genre | Mathematics |
ISBN | 038722730X |
This book describes how generalised linear modelling procedures can be used in many different fields, without becoming entangled in problems of statistical inference. The author shows the unity of many of the commonly used models and provides readers with a taste of many different areas, such as survival models, time series, and spatial analysis, and of their unity. As such, this book will appeal to applied statisticians and to scientists having a basic grounding in modern statistics. With many exercises at the end of each chapter, it will equally constitute an excellent text for teaching applied statistics students and non- statistics majors. The reader is assumed to have knowledge of basic statistical principles, whether from a Bayesian, frequentist, or direct likelihood point of view, being familiar at least with the analysis of the simpler normal linear models, regression and ANOVA.
Generalized Linear Models
Title | Generalized Linear Models PDF eBook |
Author | P. McCullagh |
Publisher | Routledge |
Pages | 536 |
Release | 2019-01-22 |
Genre | Mathematics |
ISBN | 1351445847 |
The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and ot
Generalized Linear Models for Insurance Data
Title | Generalized Linear Models for Insurance Data PDF eBook |
Author | Piet de Jong |
Publisher | Cambridge University Press |
Pages | 207 |
Release | 2008-02-28 |
Genre | Business & Economics |
ISBN | 1139470477 |
This is the only book actuaries need to understand generalized linear models (GLMs) for insurance applications. GLMs are used in the insurance industry to support critical decisions. Until now, no text has introduced GLMs in this context or addressed the problems specific to insurance data. Using insurance data sets, this practical, rigorous book treats GLMs, covers all standard exponential family distributions, extends the methodology to correlated data structures, and discusses recent developments which go beyond the GLM. The issues in the book are specific to insurance data, such as model selection in the presence of large data sets and the handling of varying exposure times. Exercises and data-based practicals help readers to consolidate their skills, with solutions and data sets given on the companion website. Although the book is package-independent, SAS code and output examples feature in an appendix and on the website. In addition, R code and output for all the examples are provided on the website.
Foundations of Linear and Generalized Linear Models
Title | Foundations of Linear and Generalized Linear Models PDF eBook |
Author | Alan Agresti |
Publisher | John Wiley & Sons |
Pages | 471 |
Release | 2015-02-23 |
Genre | Mathematics |
ISBN | 1118730038 |
A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.