Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing
Title | Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing PDF eBook |
Author | Ni-Bin Chang |
Publisher | CRC Press |
Pages | 508 |
Release | 2018-02-21 |
Genre | Technology & Engineering |
ISBN | 1498774342 |
In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.
Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing
Title | Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing PDF eBook |
Author | Ni-Bin Chang |
Publisher | CRC Press |
Pages | 627 |
Release | 2018-02-21 |
Genre | Technology & Engineering |
ISBN | 1351650637 |
In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.
Multisensor Data Fusion
Title | Multisensor Data Fusion PDF eBook |
Author | David Hall |
Publisher | CRC Press |
Pages | 564 |
Release | 2001-06-20 |
Genre | Technology & Engineering |
ISBN | 1420038540 |
The emerging technology of multisensor data fusion has a wide range of applications, both in Department of Defense (DoD) areas and in the civilian arena. The techniques of multisensor data fusion draw from an equally broad range of disciplines, including artificial intelligence, pattern recognition, and statistical estimation. With the rapid evolut
Multi-Sensor Information Fusion
Title | Multi-Sensor Information Fusion PDF eBook |
Author | Xue-Bo Jin |
Publisher | MDPI |
Pages | 602 |
Release | 2020-03-23 |
Genre | Technology & Engineering |
ISBN | 3039283022 |
This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.
Optical Remote Sensing of Ocean Hydrodynamics
Title | Optical Remote Sensing of Ocean Hydrodynamics PDF eBook |
Author | Victor Raizer |
Publisher | CRC Press |
Pages | 313 |
Release | 2019-03-04 |
Genre | Technology & Engineering |
ISBN | 1351119176 |
Optical Remote Sensing is one of the main technologies used in sea surface monitoring. Optical Remote Sensing of Ocean Hydrodynamics investigates and demonstrates capabilities of optical remote sensing technology for enhanced observations and detection of ocean environments. It provides extensive knowledge of physical principles and capabilities of optical observations of the oceans at high spatial resolution, 1-4m, and on the observations of surface wave hydrodynamic processes. It also describes the implementation of spectral-statistical and fusion algorithms for analyses of multispectral optical databases and establishes physics-based criteria for detection of complex wave phenomena and hydrodynamic disturbances including assessment and management of optical databases. This book explains the physical principles of high-resolution optical imagery of the ocean surface, discusses for the first time the capabilities of observing hydrodynamic processes and events, and emphasizes the integration of optical measurements and enhanced data analysis. It also covers both the assessment and the interpretation of dynamic multispectral optical databases and includes applications for advanced studies and nonacoustic detection. This book is an invaluable resource for researches, industry professionals, engineers, and students working on cross-disciplinary problems in ocean hydrodynamics, optical remote sensing of the ocean and sea surface remote sensing. Readers in the fields of geosciences and remote sensing, applied physics, oceanography, satellite observation technology, and optical engineering will learn the theory and practice of optical interactions with the ocean.
Vegetation Monitoring
Title | Vegetation Monitoring PDF eBook |
Author | Caryl L. Elzinga |
Publisher | DIANE Publishing |
Pages | 190 |
Release | 1998-05 |
Genre | Science |
ISBN | 9780788148378 |
This annotated bibliography documents literature addressing the design and implementation of vegetation monitoring. It provides resources managers, ecologists, and scientists access to the great volume of literature addressing many aspects of vegetation monitoring: planning and objective setting, choosing vegetation attributes to measure, sampling design, sampling methods, statistical and graphical analysis, and communication of results. Over half of the 1400 references have been annotated. Keywords pertaining to the type of monitoring or method are included with each bibliographic entry. Keyword index.
Body Sensor Networks
Title | Body Sensor Networks PDF eBook |
Author | Guang-Zhong Yang |
Publisher | Springer |
Pages | 572 |
Release | 2014-04-16 |
Genre | Computers |
ISBN | 1447163745 |
The last decade has witnessed a rapid surge of interest in new sensing and monitoring devices for wellbeing and healthcare. One key development in this area is wireless, wearable and implantable in vivo monitoring and intervention. A myriad of platforms are now available from both academic institutions and commercial organisations. They permit the management of patients with both acute and chronic symptoms, including diabetes, cardiovascular diseases, treatment of epilepsy and other debilitating neurological disorders. Despite extensive developments in sensing technologies, there are significant research issues related to system integration, sensor miniaturisation, low-power sensor interface, wireless telemetry and signal processing. In the 2nd edition of this popular and authoritative reference on Body Sensor Networks (BSN), major topics related to the latest technological developments and potential clinical applications are discussed, with contents covering. Biosensor Design, Interfacing and Nanotechnology Wireless Communication and Network Topologies Communication Protocols and Standards Energy Harvesting and Power Delivery Ultra-low Power Bio-inspired Processing Multi-sensor Fusion and Context Aware Sensing Autonomic Sensing Wearable, Ingestible Sensor Integration and Exemplar Applications System Integration and Wireless Sensor Microsystems The book also provides a comprehensive review of the current wireless sensor development platforms and a step-by-step guide to developing your own BSN applications through the use of the BSN development kit.