Multiscale Materials Modelling
Title | Multiscale Materials Modelling PDF eBook |
Author | Z. X. Guo |
Publisher | Elsevier |
Pages | 307 |
Release | 2007-05-31 |
Genre | Technology & Engineering |
ISBN | 184569337X |
Multiscale materials modelling offers an integrated approach to modelling material behaviour across a range of scales from the electronic, atomic and microstructural up to the component level. As a result, it provides valuable new insights into complex structures and their properties, opening the way to develop new, multi-functional materials together with improved process and product designs. Multiscale materials modelling summarises some of the key techniques and their applications.The various chapters cover the spectrum of scales in modelling methodologies, including electronic structure calculations, mesoscale and continuum modelling. The book covers such themes as dislocation behaviour and plasticity as well as the modelling of structural materials such as metals, polymers and ceramics. With its distinguished editor and international team of contributors, Multiscale materials modelling is a valuable reference for both the modelling community and those in industry wanting to know more about how multiscale materials modelling can help optimise product and process design. - Reviews the principles and applications of mult-scale materials modelling - Covers themes such as dislocation behaviour and plasticity and the modelling of structural materials - Examines the spectrum of scales in modelling methodologies, including electronic structure calculations, mesoscale and continuum modelling
Multiscale Modelling of Advanced Materials
Title | Multiscale Modelling of Advanced Materials PDF eBook |
Author | Runa Kumari |
Publisher | Springer Nature |
Pages | 205 |
Release | 2020-02-08 |
Genre | Technology & Engineering |
ISBN | 9811522677 |
This volume covers the recent advances and research on the modeling and simulation of materials. The primary aim is to take the reader through the mathematical analysis to the theories of electricity and magnetism using multiscale modelling, covering a variety of numerical methods such as finite difference time domain (FDTD), finite element method (FEM) and method of moments. The book also introduces the multiscale Green’s function (GF) method for static and dynamic modelling and simulation results of modern advanced nanomaterials, particularly the two-dimensional (2D) materials. This book will be of interest to researchers and industry professionals working on advanced materials.
Multiscale Materials Modeling
Title | Multiscale Materials Modeling PDF eBook |
Author | Siegfried Schmauder |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 346 |
Release | 2016-08-22 |
Genre | Science |
ISBN | 3110412454 |
This book presents current spatial and temporal multiscaling approaches of materials modeling. Recent results demonstrate the deduction of macroscopic properties at the device and component level by simulating structures and materials sequentially on atomic, micro- and mesostructural scales. The book covers precipitation strengthening and fracture processes in metallic alloys, materials that exhibit ferroelectric and magnetoelectric properties as well as biological, metal-ceramic and polymer composites. The progress which has been achieved documents the current state of art in multiscale materials modelling (MMM) on the route to full multi-scaling. Contents: Part I: Multi-time-scale and multi-length-scale simulations of precipitation and strengthening effects Linking nanoscale and macroscale Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, Molecular Dynamics, and Phase-Field simulations Multiscale modeling predictions of age hardening curves in Al-Cu alloys Kinetic Monte Carlo modeling of shear-coupled motion of grain boundaries Product Properties of a two-phase magneto-electric composite Part II: Multiscale simulations of plastic deformation and fracture Niobium/alumina bicrystal interface fracture Atomistically informed crystal plasticity model for body-centred cubic iron FE2AT ・ finite element informed atomistic simulations Multiscale fatigue crack growth modeling for welded stiffened panels Molecular dynamics study on low temperature brittleness in tungsten single crystals Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure Multiscale simulation of the mechanical behavior of nanoparticle-modified polyamide composites Part III: Multiscale simulations of biological and bio-inspired materials, bio-sensors and composites Multiscale Modeling of Nano-Biosensors Finite strain compressive behaviour of CNT/epoxy nanocomposites Peptide・zinc oxide interaction
Uncertainty Quantification in Multiscale Materials Modeling
Title | Uncertainty Quantification in Multiscale Materials Modeling PDF eBook |
Author | Yan Wang |
Publisher | Woodhead Publishing |
Pages | 604 |
Release | 2020-03-12 |
Genre | Technology & Engineering |
ISBN | 0081029411 |
Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.
Multiscale Materials Modeling for Nanomechanics
Title | Multiscale Materials Modeling for Nanomechanics PDF eBook |
Author | Christopher R. Weinberger |
Publisher | Springer |
Pages | 554 |
Release | 2016-08-30 |
Genre | Technology & Engineering |
ISBN | 3319334808 |
This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.
Practical Aspects of Computational Chemistry
Title | Practical Aspects of Computational Chemistry PDF eBook |
Author | Jerzy Leszczynski |
Publisher | Springer Science & Business Media |
Pages | 468 |
Release | 2009-10-03 |
Genre | Science |
ISBN | 9048126878 |
"Practical Aspects of Computational Chemistry" presents contributions on a range of aspects of Computational Chemistry applied to a variety of research fields. The chapters focus on recent theoretical developments which have been used to investigate structures and properties of large systems with minimal computational resources. Studies include those in the gas phase, various solvents, various aspects of computational multiscale modeling, Monte Carlo simulations, chirality, the multiple minima problem for protein folding, the nature of binding in different species and dihydrogen bonds, carbon nanotubes and hydrogen storage, adsorption and decomposition of organophosphorus compounds, X-ray crystallography, proton transfer, structure-activity relationships, a description of the REACH programs of the European Union for chemical regulatory purposes, reactions of nucleic acid bases with endogenous and exogenous reactive oxygen species and different aspects of nucleic acid bases, base pairs and base tetrads.
Dislocations in Solids
Title | Dislocations in Solids PDF eBook |
Author | |
Publisher | Elsevier |
Pages | 292 |
Release | 2009-08-28 |
Genre | Science |
ISBN | 0444535349 |
New materials addressed for the first time include the chapters on minerals by Barber et al and the chapter on dislocations in colloidal crystals by Schall and Spaepen. Moriarty et al extend the first principles calculations of kink configurations in bcc metals to high pressures, including the use of flexible boundary conditions to model dilatational effects. Rabier et al clarify the issue of glide-shuffle slip systems in diamond cubic and related III-V compounds. Metadislocations, discussed by Feuerbacher and Heggen, represent a new type of defect in multicomponent metal compounds and alloys. - Kink mechanisms for dislocation motion at high pressure in bcc metals - Dislocation core structures identified in silicon at high stress - Metadislocations, a new type of defect, identified and described - Extension of dislocation concepts to complex minerals - First observations of dislocations in colloidal crystals