Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives
Title | Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives PDF eBook |
Author | Marius Rosu |
Publisher | John Wiley & Sons |
Pages | 312 |
Release | 2017-12-18 |
Genre | Science |
ISBN | 1119103444 |
Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.
Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives
Title | Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives PDF eBook |
Author | Marius Rosu |
Publisher | |
Pages | |
Release | 2018 |
Genre | TECHNOLOGY & ENGINEERING |
ISBN | 9781119103462 |
Modeling Power Electronics and Interfacing Energy Conversion Systems
Title | Modeling Power Electronics and Interfacing Energy Conversion Systems PDF eBook |
Author | M. Godoy Simoes |
Publisher | John Wiley & Sons |
Pages | 345 |
Release | 2016-09-16 |
Genre | Technology & Engineering |
ISBN | 1119058279 |
Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work. Discusses the mathematical formulation of system equations for energy systems and power electronics aiming state-space and circuit oriented simulations Studies the interactions between MATLAB and Simulink models and functions with real-world implementation using microprocessors and microcontrollers Presents numerical integration techniques, transfer-function modeling, harmonic analysis and power quality performance assessment Examines existing software such as, MATLAB/Simulink, Power Systems Toolbox and PSIM to simulate power electronic circuits including the use of renewable energy sources such as wind and solar sources The simulation files are available for readers who register with the Google Group: power-electronics-interfacing-energy-conversion-systems@googlegroups.com. After your registration you will receive information in how to access the simulation files, the Google Group can also be used to communicate with other registered readers of this book.
Design of Rotating Electrical Machines
Title | Design of Rotating Electrical Machines PDF eBook |
Author | Juha Pyrhonen |
Publisher | John Wiley & Sons |
Pages | 612 |
Release | 2013-09-26 |
Genre | Technology & Engineering |
ISBN | 1118701658 |
In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machines An expanded section on the design of permanent magnet synchronous machines, now reporting on the design of tooth-coil, high-torque permanent magnet machines and their properties Large updates and new material on synchronous reluctance machines, air-gap inductance, losses in and resistivity of permanent magnets (PM), operating point of loaded PM circuit, PM machine design, and minimizing the losses in electrical machines> End-of-chapter exercises and new direct design examples with methods and solutions to real design problems> A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Also a MATLAB code for optimizing the design of an induction motor is provided Outlining a step-by-step sequence of machine design, this book enables electrical machine designers to design rotating electrical machines. With a thorough treatment of all existing and emerging technologies in the field, it is a useful manual for professionals working in the diagnosis of electrical machines and drives. A rigorous introduction to the theoretical principles and techniques makes the book invaluable to senior electrical engineering students, postgraduates, researchers and university lecturers involved in electrical drives technology and electromechanical energy conversion.
Magnetic Material for Motor Drive Systems
Title | Magnetic Material for Motor Drive Systems PDF eBook |
Author | Keisuke Fujisaki |
Publisher | Springer Nature |
Pages | 431 |
Release | 2019-11-29 |
Genre | Technology & Engineering |
ISBN | 9813299061 |
This book focuses on how to use magnetic material usefully for electrical motor drive system, especially electrical vehicles and power electronics. The contents have been selected in such a way that engineers in other fields might find some of the ideas difficult to grasp, but they can easily acquire a general or basic understanding of related concepts if they acquire even a rudimentary understanding of the selected contents.The cutting-edge technologies of magnetism are also explained. From the fundamental theory of magnetism to material, equipment, and applications, readers can understand the underlying concepts. Therefore, a new electric vehicle from the point of view of magnetic materials or a new magnetic material from the point of a view of electric vehicles can be envisioned: that is, magnetic material for motor drive systems based on fusion technology of an electromagnetic field. Magnetic material alone does not make up an electric vehicle, of course. Other components such as mechanical structure material, semiconductors, fuel cells, and electrically conductive material are important, and they are difficult to achieve. However, magnetic material involves one of the most important key technologies, and there are high expectations for its use in the future. It will be the future standard for motor-drive system researchers and of magneticmaterial researchers as well. This book is a first step in that direction.
Electrical Power Systems
Title | Electrical Power Systems PDF eBook |
Author | Mohamed E. El-Hawary |
Publisher | John Wiley & Sons |
Pages | 808 |
Release | 1995-03-09 |
Genre | Technology & Engineering |
ISBN | 9780780311404 |
This comprehensive textbook introduces electrical engineers to themost relevant concepts and techniques in electric power systemsengineering today. With an emphasis on practical motivations forchoosing the best design and analysis approaches, the authorcarefully integrates theory and application. Key features include more than 500 illustrations and diagrams,clearly developed procedures and application examples, importantmathematical details, coverage of both alternating and directcurrent, an additional set of solved problems at the end of eachchapter, and an historical overview of the development of electricpower systems. This book will be useful to both power engineeringstudents and professional power engineers.
Modelling and Control of Switched Reluctance Machines
Title | Modelling and Control of Switched Reluctance Machines PDF eBook |
Author | Rui Araújo |
Publisher | BoD – Books on Demand |
Pages | 373 |
Release | 2020-09-09 |
Genre | Science |
ISBN | 1789844541 |
Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators.