Multiphase Flow Dynamics 2

Multiphase Flow Dynamics 2
Title Multiphase Flow Dynamics 2 PDF eBook
Author Nikolay Ivanov Kolev
Publisher Springer Science & Business Media
Pages 730
Release 2005
Genre Multiphase flow
ISBN 9783540221074

Download Multiphase Flow Dynamics 2 Book in PDF, Epub and Kindle

Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this book contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations. This book provides a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the mechanical and thermal interactions in multiphase dynamics are provided. This third edition includes various updates, extensions, improvements and corrections.

Multiphase Flow Dynamics 3

Multiphase Flow Dynamics 3
Title Multiphase Flow Dynamics 3 PDF eBook
Author Nikolay Ivanov Kolev
Publisher Springer Science & Business Media
Pages 314
Release 2007-06-08
Genre Technology & Engineering
ISBN 354071443X

Download Multiphase Flow Dynamics 3 Book in PDF, Epub and Kindle

In order to allow the application of the theory from all the three volumes also to processes in combustion engines a systematic set of internally consistent state equations for diesel fuel gas and liquid valid in broad range of changing pressure and temperature are provided also in Volume 3. Erlangen, October 2006 Nikolay Ivanov Kolev Table of contents 1 Some basics of the single-phase boundary layer theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 Flow over plates, velocity profiles, share forces, heat transfer. . . . . . . . . . . . . . . . . . . . 1 1. 1. 1 Laminar flow over the one site of a plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1. 2 Turbulent flow parallel to plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 2 Steady state flow in pipes with circular cross sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 2. 1 Hydraulic smooth wall surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 2. 2 Transition region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 2. 3 Complete rough region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 2. 4 Heat transfer to fluid in a pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1. 3 Transient flow in pipes with circular cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 Introduction to turbulence of multi-phase flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2. 1 Basic ideas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2. 2 Isotropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2. 3 Scales, eddy viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2. 3. 1 Small scale turbulent motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2. 3. 2 Large scale turbulent motion, Kolmogorov-Pandtl expression. . . . . . . . . 42 2. 4 k-eps framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 Sources for fine resolution outside the boundary layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3. 1 Bulk sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3. 1. 1 Deformation of the velocity field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3. 1. 2 Blowing and suction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Multiphase Flow Dynamics 3

Multiphase Flow Dynamics 3
Title Multiphase Flow Dynamics 3 PDF eBook
Author Nikolay Ivanov Kolev
Publisher Springer Science & Business Media
Pages 683
Release 2011-09-25
Genre Technology & Engineering
ISBN 3642213723

Download Multiphase Flow Dynamics 3 Book in PDF, Epub and Kindle

Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package “Multiphase Flow Daynmics” contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is revealed to the reader. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM In the present third volume methods for describing of the thermal interactions in multiphase dynamics are provided. In addition a large number of valuable experiments is collected and predicted using the methods introduced in this monograph. In this way the accuracy of the methods is revealed to the reader. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended,” BERND PLATZER, ZAAM

Multiphase Flow Dynamics 2

Multiphase Flow Dynamics 2
Title Multiphase Flow Dynamics 2 PDF eBook
Author Nikolay Ivanov Kolev
Publisher Springer Science & Business Media
Pages 702
Release 2005-08-15
Genre Technology & Engineering
ISBN 3540268308

Download Multiphase Flow Dynamics 2 Book in PDF, Epub and Kindle

Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this book contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations. This book provides a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the mechanical and thermal interactions in multiphase dynamics are provided. This third edition includes various updates, extensions, improvements and corrections.

Dynamics of Multiphase Flows

Dynamics of Multiphase Flows
Title Dynamics of Multiphase Flows PDF eBook
Author Chao Zhu
Publisher Cambridge University Press
Pages 621
Release 2021-06-17
Genre Mathematics
ISBN 1108473741

Download Dynamics of Multiphase Flows Book in PDF, Epub and Kindle

Address physical principles and unified theories governing multiphase flows, with methods, applications, and problems.

Fundamentals of Multiphase Flow

Fundamentals of Multiphase Flow
Title Fundamentals of Multiphase Flow PDF eBook
Author Christopher E. Brennen
Publisher Cambridge University Press
Pages 376
Release 2005-04-18
Genre Science
ISBN 9780521848046

Download Fundamentals of Multiphase Flow Book in PDF, Epub and Kindle

Publisher Description

Multiphase Flow Dynamics 5

Multiphase Flow Dynamics 5
Title Multiphase Flow Dynamics 5 PDF eBook
Author Nikolay Ivanov Kolev
Publisher Springer Science & Business Media
Pages 839
Release 2011-10-18
Genre Technology & Engineering
ISBN 3642206018

Download Multiphase Flow Dynamics 5 Book in PDF, Epub and Kindle

The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demonstrate the success of the different ideas and models. After an introduction of the design of the reactor pressure vessels for pressurized and boiling water reactors the accuracy of the modern methods is demonstrated using large number of experimental data sets for steady and transient flows in heated bundles. Starting with single pipe boiling going through boiling in the rod bundles the analysis of complete vessel including the reactor is finally demonstrated. Then a powerful method for nonlinear stability analysis of flow boiling and condensation is introduced. Models are presented and their accuracies are investigated for describing critical multiphase flow at different level of complexity. Basics of designing of steam generators, moisture separators and emergency condensers are presented. Methods for analyzing a complex pipe network flows with components like pumps, valves etc. are also presented. Methods for analysis of important aspects of the severe accidents like melt-water interactions, external cooling and cooling of layers of molten nuclear reactor material are presented. Valuable sets of thermo-physical and transport properties for severe accident analysis are presented for the following materials: uranium dioxide, zirconium dioxide, stainless steel, zirconium, aluminum, aluminum oxide, silicon dioxide, iron oxide, molybdenum, boron oxide, reactor corium, sodium, lead, bismuth, and lead-bismuth eutectic alloy. The emphasis is on the complete and consistent thermo dynamical sets of analytical approximations appropriate for computational analysis. Therefore the book presents a complete coverage of the modern Nuclear Thermal Hydrodynamics. This present second edition includes various updates, extensions, improvements and corrections. This present second edition includes various updates, extensions, improvements and corrections.