Multidimensional Second Order Stochastic Processes

Multidimensional Second Order Stochastic Processes
Title Multidimensional Second Order Stochastic Processes PDF eBook
Author Y–ichir“ Kakihara
Publisher World Scientific
Pages 352
Release 1997
Genre Mathematics
ISBN 9789810230005

Download Multidimensional Second Order Stochastic Processes Book in PDF, Epub and Kindle

A research-expository treatment of infinite-dimensional nonstationary stochastic processes (or time series) on a locally compact abelian group is provided with this book. Stochastic measures and scalar or operator bimeasures are fully discussed.

Multidimensional Second Order Stochastic Processes

Multidimensional Second Order Stochastic Processes
Title Multidimensional Second Order Stochastic Processes PDF eBook
Author Yuichiro Kakihara
Publisher World Scientific
Pages 343
Release 1997-02-27
Genre Mathematics
ISBN 9814497894

Download Multidimensional Second Order Stochastic Processes Book in PDF, Epub and Kindle

This book provides a research-expository treatment of infinite-dimensional nonstationary stochastic processes or time series. Stochastic measures and scalar or operator bimeasures are fully discussed to develop integral representations of various classes of nonstationary processes such as harmonizable, V-bounded, Cramér and Karhunen classes and also the stationary class. Emphasis is on the use of functional, harmonic analysis as well as probability theory. Applications are made from the probabilistic and statistical points of view to prediction problems, Kalman filter, sampling theorems and strong laws of large numbers. Readers may find that the covariance kernel analysis is emphasized and it reveals another aspect of stochastic processes. This book is intended not only for probabilists and statisticians, but also for communication engineers.

Multidimensional Stochastic Processes as Rough Paths

Multidimensional Stochastic Processes as Rough Paths
Title Multidimensional Stochastic Processes as Rough Paths PDF eBook
Author Peter K. Friz
Publisher Cambridge University Press
Pages 670
Release 2010-02-04
Genre Mathematics
ISBN 9780521876070

Download Multidimensional Stochastic Processes as Rough Paths Book in PDF, Epub and Kindle

Rough path analysis provides a fresh perspective on Ito's important theory of stochastic differential equations. Key theorems of modern stochastic analysis (existence and limit theorems for stochastic flows, Freidlin-Wentzell theory, the Stroock-Varadhan support description) can be obtained with dramatic simplifications. Classical approximation results and their limitations (Wong-Zakai, McShane's counterexample) receive 'obvious' rough path explanations. Evidence is building that rough paths will play an important role in the future analysis of stochastic partial differential equations and the authors include some first results in this direction. They also emphasize interactions with other parts of mathematics, including Caratheodory geometry, Dirichlet forms and Malliavin calculus. Based on successful courses at the graduate level, this up-to-date introduction presents the theory of rough paths and its applications to stochastic analysis. Examples, explanations and exercises make the book accessible to graduate students and researchers from a variety of fields.

Stochastic Processes and Applications

Stochastic Processes and Applications
Title Stochastic Processes and Applications PDF eBook
Author Grigorios A. Pavliotis
Publisher Springer
Pages 345
Release 2014-11-19
Genre Mathematics
ISBN 1493913239

Download Stochastic Processes and Applications Book in PDF, Epub and Kindle

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Stochastic Processes: Theory and Methods

Stochastic Processes: Theory and Methods
Title Stochastic Processes: Theory and Methods PDF eBook
Author D N Shanbhag
Publisher Gulf Professional Publishing
Pages 990
Release 2001
Genre Mathematics
ISBN 9780444500144

Download Stochastic Processes: Theory and Methods Book in PDF, Epub and Kindle

This volume in the series contains chapters on areas such as pareto processes, branching processes, inference in stochastic processes, Poisson approximation, Levy processes, and iterated random maps and some classes of Markov processes. Other chapters cover random walk and fluctuation theory, a semigroup representation and asymptomatic behavior of certain statistics of the Fisher-Wright-Moran coalescent, continuous-time ARMA processes, record sequence and their applications, stochastic networks with product form equilibrium, and stochastic processes in insurance and finance. Other subjects include renewal theory, stochastic processes in reliability, supports of stochastic processes of multiplicity one, Markov chains, diffusion processes, and Ito's stochastic calculus and its applications. c. Book News Inc.

Essentials of Stochastic Processes

Essentials of Stochastic Processes
Title Essentials of Stochastic Processes PDF eBook
Author Richard Durrett
Publisher Springer
Pages 282
Release 2016-11-07
Genre Mathematics
ISBN 3319456148

Download Essentials of Stochastic Processes Book in PDF, Epub and Kindle

Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Hilbert And Banach Space-valued Stochastic Processes

Hilbert And Banach Space-valued Stochastic Processes
Title Hilbert And Banach Space-valued Stochastic Processes PDF eBook
Author Yuichiro Kakihara
Publisher World Scientific
Pages 539
Release 2021-07-29
Genre Mathematics
ISBN 9811211760

Download Hilbert And Banach Space-valued Stochastic Processes Book in PDF, Epub and Kindle

This is a development of the book entitled Multidimensional Second Order Stochastic Processes. It provides a research expository treatment of infinite-dimensional stationary and nonstationary stochastic processes or time series, based on Hilbert and Banach space-valued second order random variables. Stochastic measures and scalar or operator bimeasures are fully discussed to develop integral representations of various classes of nonstationary processes such as harmonizable, V-bounded, Cramér and Karhunen classes as well as the stationary class. A new type of the Radon-Nikodým derivative of a Banach space-valued measure is introduced, together with Schauder basic measures, to study uniformly bounded linearly stationary processes.Emphasis is on the use of functional analysis and harmonic analysis as well as probability theory. Applications are made from the probabilistic and statistical points of view to prediction problems, Kalman filter, sampling theorems and strong laws of large numbers. Generalizations are made to consider Banach space-valued stochastic processes to include processes of pth order for p ≥ 1. Readers may find that the covariance kernel is always emphasized and reveals another aspect of stochastic processes.This book is intended not only for probabilists and statisticians, but also for functional analysts and communication engineers.