Multi-Valued and Universal Binary Neurons
Title | Multi-Valued and Universal Binary Neurons PDF eBook |
Author | Igor Aizenberg |
Publisher | Springer Science & Business Media |
Pages | 274 |
Release | 2013-03-14 |
Genre | Science |
ISBN | 1475731159 |
Multi-Valued and Universal Binary Neurons deals with two new types of neurons: multi-valued neurons and universal binary neurons. These neurons are based on complex number arithmetic and are hence much more powerful than the typical neurons used in artificial neural networks. Therefore, networks with such neurons exhibit a broad functionality. They can not only realise threshold input/output maps but can also implement any arbitrary Boolean function. Two learning methods are presented whereby these networks can be trained easily. The broad applicability of these networks is proven by several case studies in different fields of application: image processing, edge detection, image enhancement, super resolution, pattern recognition, face recognition, and prediction. The book is hence partitioned into three almost equally sized parts: a mathematical study of the unique features of these new neurons, learning of networks of such neurons, and application of such neural networks. Most of this work was developed by the first two authors over a period of more than 10 years and was only available in the Russian literature. With this book we present the first comprehensive treatment of this important class of neural networks in the open Western literature. Multi-Valued and Universal Binary Neurons is intended for anyone with a scholarly interest in neural network theory, applications and learning. It will also be of interest to researchers and practitioners in the fields of image processing, pattern recognition, control and robotics.
New Trends in Neural Computation
Title | New Trends in Neural Computation PDF eBook |
Author | José Mira |
Publisher | Springer Science & Business Media |
Pages | 772 |
Release | 1993-05-27 |
Genre | Computers |
ISBN | 9783540567981 |
Neural computation arises from the capacity of nervous tissue to process information and accumulate knowledge in an intelligent manner. Conventional computational machines have encountered enormous difficulties in duplicatingsuch functionalities. This has given rise to the development of Artificial Neural Networks where computation is distributed over a great number of local processing elements with a high degree of connectivityand in which external programming is replaced with supervised and unsupervised learning. The papers presented in this volume are carefully reviewed versions of the talks delivered at the International Workshop on Artificial Neural Networks (IWANN '93) organized by the Universities of Catalonia and the Spanish Open University at Madrid and held at Barcelona, Spain, in June 1993. The 111 papers are organized in seven sections: biological perspectives, mathematical models, learning, self-organizing networks, neural software, hardware implementation, and applications (in five subsections: signal processing and pattern recognition, communications, artificial vision, control and robotics, and other applications).
Complex-Valued Neural Networks with Multi-Valued Neurons
Title | Complex-Valued Neural Networks with Multi-Valued Neurons PDF eBook |
Author | Igor Aizenberg |
Publisher | Springer Science & Business Media |
Pages | 273 |
Release | 2011-06-24 |
Genre | Computers |
ISBN | 3642203523 |
Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts. This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information. These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories. The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.
Machine Learning and Data Mining in Pattern Recognition
Title | Machine Learning and Data Mining in Pattern Recognition PDF eBook |
Author | Petra Perner |
Publisher | Springer |
Pages | 222 |
Release | 2003-06-26 |
Genre | Computers |
ISBN | 3540480978 |
The field of machine learning and data mining in connection with pattern recognition enjoys growing popularity and attracts many researchers. Automatic pattern recognition systems have proven successful in many applications. The wide use of these systems depends on their ability to adapt to changing environmental conditions and to deal with new objects. This requires learning capabilities on the parts of these systems. The exceptional attraction of learning in pattern recognition lies in the specific data themselves and the different stages at which they get processed in a pattern recognition system. This results a specific branch within the field of machine learning. At the workshop, were presented machine learning approaches for image pre-processing, image segmentation, recognition and interpretation. Machine learning systems were shown on applications such as document analysis and medical image analysis. Many databases are developed that contain multimedia sources such as images, measurement protocols, and text documents. Such systems should be able to retrieve these sources by content. That requires specific retrieval and indexing strategies for images and signals. Higher quality database contents can be achieved if it were possible to mine these databases for their underlying information. Such mining techniques have to consider the specific characteristic of the image sources. The field of mining multimedia databases is just starting out. We hope that our workshop can attract many other researchers to this subject.
Computational Intelligence: Theory and Applications
Title | Computational Intelligence: Theory and Applications PDF eBook |
Author | Bernd Reusch |
Publisher | Springer Science & Business Media |
Pages | 726 |
Release | 2007-07-16 |
Genre | Computers |
ISBN | 3540487743 |
Fuzzy Days in Dortmund were held for the first time in 1991. Initially, the con ference was intended for scientists and practitioners as a platform for discussions on theory and application of fuzzy logic. Early on, synergetic links with neural networks were included and the conference evolved gradually to embrace the full spectrum of what is now called Computational Intelligence (CI). Therefore, it seemed logical to launch the 4th Fuzzy Days in 1994 as a conference for CI—one of the world's first conferences featuring fuzzy logic, neural networks and evolu tionary algorithms together in one event. Following this successful tradition, the 6th Fuzzy Days' aim is to provide an international forum for reporting significant results on the theory and application of Cl-methods. Once again, we have received a remarkable number of papers. I would like to express my gratitude to all who have been interested in presenting their work within the framework of this conference and to the members of the programme committee for their valuable work (in this edition each paper was reviewed by five referees). In particular, I wish to thank all keynote and tutorial speakers for their commitment. Last but not least, I am obliged to the Deutsche Forschun- gemeinschaft and Kommunalverband Ruhrgebiet for their financial support.
Computational Intelligence
Title | Computational Intelligence PDF eBook |
Author | Kurosh Madani |
Publisher | Springer Science & Business Media |
Pages | 290 |
Release | 2011-04-08 |
Genre | Computers |
ISBN | 3642202055 |
The present book includes a set of selected extended papers from the first International Joint Conference on Computational Intelligence (IJCCI 2009), held in Madeira, Portugal, from 5 to 7 October 2009. The conference was composed by three co-located conferences: The International Conference on Fuzzy Computation (ICFC), the International Conference on Evolutionary Computation (ICEC), and the International Conference on Neural Computation (ICNC). Recent progresses in scientific developments and applications in these three areas are reported in this book. IJCCI received 231 submissions, from 35 countries, in all continents. After a double blind paper review performed by the Program Committee, only 21 submissions were accepted as full papers and thus selected for oral presentation, leading to a full paper acceptance ratio of 9%. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, based also on the assessment of presentation quality and audience interest, so that this book includes the extended and revised versions of the very best papers of IJCCI 2009. Commitment to high quality standards is a major concern of IJCCI that will be maintained in the next editions, considering not only the stringent paper acceptance ratios but also the quality of the program committee, keynote lectures, participation level and logistics.
Artificial Intelligence and Soft Computing, Part II
Title | Artificial Intelligence and Soft Computing, Part II PDF eBook |
Author | Leszek Rutkowski |
Publisher | Springer Science & Business Media |
Pages | 728 |
Release | 2010-06 |
Genre | Computers |
ISBN | 3642132316 |
This volume constitutes the proceedings of the 10th International Conference on Artificial Intelligence and Soft Computing, ICAISC’2010, held in Zakopane, Poland in June 13-17, 2010. The articles are organized in topical sections on Fuzzy Systems and Their Applications; Data Mining, Classification and Forecasting; Image and Speech Analysis; Bioinformatics and Medical Applications (Volume 6113) together with Neural Networks and Their Applications; Evolutionary Algorithms and Their Applications; Agent System, Robotics and Control; Various Problems aof Artificial Intelligence (Volume 6114).