Data Mining: Concepts and Techniques
Title | Data Mining: Concepts and Techniques PDF eBook |
Author | Jiawei Han |
Publisher | Elsevier |
Pages | 740 |
Release | 2011-06-09 |
Genre | Computers |
ISBN | 0123814804 |
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Data Preparation for Data Mining Using SAS
Title | Data Preparation for Data Mining Using SAS PDF eBook |
Author | Mamdouh Refaat |
Publisher | Elsevier |
Pages | 425 |
Release | 2010-07-27 |
Genre | Computers |
ISBN | 0080491006 |
Are you a data mining analyst, who spends up to 80% of your time assuring data quality, then preparing that data for developing and deploying predictive models? And do you find lots of literature on data mining theory and concepts, but when it comes to practical advice on developing good mining views find little "how to information? And are you, like most analysts, preparing the data in SAS?This book is intended to fill this gap as your source of practical recipes. It introduces a framework for the process of data preparation for data mining, and presents the detailed implementation of each step in SAS. In addition, business applications of data mining modeling require you to deal with a large number of variables, typically hundreds if not thousands. Therefore, the book devotes several chapters to the methods of data transformation and variable selection. - A complete framework for the data preparation process, including implementation details for each step. - The complete SAS implementation code, which is readily usable by professional analysts and data miners. - A unique and comprehensive approach for the treatment of missing values, optimal binning, and cardinality reduction. - Assumes minimal proficiency in SAS and includes a quick-start chapter on writing SAS macros.
Business Modeling and Data Mining
Title | Business Modeling and Data Mining PDF eBook |
Author | Dorian Pyle |
Publisher | Elsevier |
Pages | 721 |
Release | 2003-05-17 |
Genre | Computers |
ISBN | 0080500455 |
Business Modeling and Data Mining demonstrates how real world business problems can be formulated so that data mining can answer them. The concepts and techniques presented in this book are the essential building blocks in understanding what models are and how they can be used practically to reveal hidden assumptions and needs, determine problems, discover data, determine costs, and explore the whole domain of the problem. This book articulately explains how to understand both the strategic and tactical aspects of any business problem, identify where the key leverage points are and determine where quantitative techniques of analysis -- such as data mining -- can yield most benefit. It addresses techniques for discovering how to turn colloquial expression and vague descriptions of a business problem first into qualitative models and then into well-defined quantitative models (using data mining) that can then be used to find a solution. The book completes the process by illustrating how these findings from data mining can be turned into strategic or tactical implementations. · Teaches how to discover, construct and refine models that are useful in business situations· Teaches how to design, discover and develop the data necessary for mining · Provides a practical approach to mining data for all business situations· Provides a comprehensive, easy-to-use, fully interactive methodology for building models and mining data· Provides pointers to supplemental online resources, including a downloadable version of the methodology and software tools.
Management of Heterogeneous and Autonomous Database Systems
Title | Management of Heterogeneous and Autonomous Database Systems PDF eBook |
Author | Ahmed K. Elmagarmid |
Publisher | Morgan Kaufmann |
Pages | 440 |
Release | 1999 |
Genre | Computers |
ISBN | 9781558602168 |
An Overview of Multidatabase Systems: Past and Present / Athman Bouguettaya, Boualem Benatallah, Ahmed Elmagarmid / - Local Autonomy and Its Effects on Multidatabase Systems / Ahmed Elmagarmid, Weimin Du, Rafi Ahmed / - Semantic Similarities Between Objects in Multiple Databases / Vipul Kashyap, Amit Sheth / - Resolution of Representational Diversity in Multidatabase Systems / Joachim Hammer, Dennis McLeod / - Schema Integration: Past, Present, and Future / Sudha Ram, V. Ramesh / - Schema and Language Translation / Bogdan Czejdo, Le Gruenwald / - Multidatabase Languages / Paolo Missier, Marek Rusinkiewicz, W. Jin / - Interdependent Database Systems / George Karabatis, Marek Rusinkiewicz, Amit Sheth / - Correctness Criteria and Concurrency Control / Panos K. Chrysanthis, Krithi Ramamritham / - Transaction Management in Multidatabase Systems: Current Technologies and Formalisms / Ken Barker, Ahmed Elmagarmid / - Transaction-Based Recovery / Jari Veijalainen. ...
Advanced Database Systems
Title | Advanced Database Systems PDF eBook |
Author | Carlo Zaniolo |
Publisher | Morgan Kaufmann |
Pages | 596 |
Release | 1997-05 |
Genre | Computers |
ISBN | 9781558604438 |
The database field has experienced a rapid and incessant growth since the development of relational databases. The progress in database systems and applications has produced a diverse landscape of specialized technology areas that have often become the exclusive domain of research specialists. Examples include active databases, temporal databases, object-oriented databases, deductive databases, imprecise reasoning and queries, and multimedia information systems. This book provides a systematic introduction to and an in-depth treatment of these advanced database areas. It supplies practitioners and researchers with authoritative coverage of recent technological advances that are shaping the future of commercial database systems and intelligent information systems. Advanced Database Systems was written by a team of six leading specialists who have made significant contributions to the development of the technology areas covered in the book. Benefiting from the authors' long experience teaching graduate and professional courses, this book is designed to provide a gradual introduction to advanced research topics and includes many examples and exercises to support its use for individual study, desk reference, and graduate classroom teaching.
Data Mining
Title | Data Mining PDF eBook |
Author | Ian H. Witten |
Publisher | Elsevier |
Pages | 665 |
Release | 2011-02-03 |
Genre | Computers |
ISBN | 0080890369 |
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization
Distributed Algorithms
Title | Distributed Algorithms PDF eBook |
Author | Wan Fokkink |
Publisher | MIT Press |
Pages | 242 |
Release | 2013-12-06 |
Genre | Computers |
ISBN | 0262318954 |
A comprehensive guide to distributed algorithms that emphasizes examples and exercises rather than mathematical argumentation. This book offers students and researchers a guide to distributed algorithms that emphasizes examples and exercises rather than the intricacies of mathematical models. It avoids mathematical argumentation, often a stumbling block for students, teaching algorithmic thought rather than proofs and logic. This approach allows the student to learn a large number of algorithms within a relatively short span of time. Algorithms are explained through brief, informal descriptions, illuminating examples, and practical exercises. The examples and exercises allow readers to understand algorithms intuitively and from different perspectives. Proof sketches, arguing the correctness of an algorithm or explaining the idea behind fundamental results, are also included. An appendix offers pseudocode descriptions of many algorithms. Distributed algorithms are performed by a collection of computers that send messages to each other or by multiple software threads that use the same shared memory. The algorithms presented in the book are for the most part “classics,” selected because they shed light on the algorithmic design of distributed systems or on key issues in distributed computing and concurrent programming. Distributed Algorithms can be used in courses for upper-level undergraduates or graduate students in computer science, or as a reference for researchers in the field.