Monte Carlo Simulations of Disordered Quantum Spin Systems in the Valence-bond Basis

Monte Carlo Simulations of Disordered Quantum Spin Systems in the Valence-bond Basis
Title Monte Carlo Simulations of Disordered Quantum Spin Systems in the Valence-bond Basis PDF eBook
Author Peter Anders
Publisher
Pages 48
Release 2006
Genre
ISBN

Download Monte Carlo Simulations of Disordered Quantum Spin Systems in the Valence-bond Basis Book in PDF, Epub and Kindle

Monte Carlo Simulations Of Disordered Systems

Monte Carlo Simulations Of Disordered Systems
Title Monte Carlo Simulations Of Disordered Systems PDF eBook
Author Sudhir Jain
Publisher World Scientific
Pages 193
Release 1992-04-01
Genre Science
ISBN 9814618497

Download Monte Carlo Simulations Of Disordered Systems Book in PDF, Epub and Kindle

This book covers the techniques of computer simulations of disordered systems. It describes how one performs Monte Carlo simulations in condensed matter physics and deals with spin-glasses, percolating networks and the random field Ising model. Other methods mentioned are molecular dynamics and Brownian dynamics. Use of flow-diagrams enables the reader to grasp both the problem and its solution more readily. The book deals with highly complicated problems at a relatively simple level and will be most useful for advanced undergraduate and other courses in computational modelling.

Quantum Monte Carlo Methods In Condensed Matter Physics

Quantum Monte Carlo Methods In Condensed Matter Physics
Title Quantum Monte Carlo Methods In Condensed Matter Physics PDF eBook
Author Masuo Suzuki
Publisher World Scientific
Pages 378
Release 1993-12-30
Genre Science
ISBN 9814602337

Download Quantum Monte Carlo Methods In Condensed Matter Physics Book in PDF, Epub and Kindle

This book reviews recent developments of quantum Monte Carlo methods and some remarkable applications to interacting quantum spin systems and strongly correlated electron systems. It contains twenty-two papers by thirty authors. Some of the features are as follows. The first paper gives the foundations of the standard quantum Monte Carlo method, including some recent results on higher-order decompositions of exponential operators and ordered exponentials. The second paper presents a general review of quantum Monte Carlo methods used in the present book. One of the most challenging problems in the field of quantum Monte Carlo techniques, the negative-sign problem, is also discussed and new methods proposed to partially overcome it. In addition, low-dimensional quantum spin systems are studied. Some interesting applications of quantum Monte Carlo methods to fermion systems are also presented to investigate the role of strong correlations and fluctuations of electrons and to clarify the mechanism of high-Tc superconductivity. Not only thermal properties but also quantum-mechanical ground-state properties have been studied by the projection technique using auxiliary fields. Further, the Haldane gap is confirmed by numerical calculations. Active researchers in the forefront of condensed matter physics as well as young graduate students who want to start learning the quantum Monte Carlo methods will find this book useful.

Measuring Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations

Measuring Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations
Title Measuring Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations PDF eBook
Author Ann Berlinsky Kallin
Publisher
Pages 65
Release 2010
Genre
ISBN

Download Measuring Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations Book in PDF, Epub and Kindle

In this thesis we examine methods for measuring entanglement entropy in spin-1/2 Heisenberg systems using quantum Monte Carlo in the valence bond basis. We begin by presenting the quantum Monte Carlo techniques used in this research. We then use these techniques to directly compare the recently proposed valence bond entanglement entropy to the standard definition of entanglement entropy: the von Neumann entanglement entropy. We find that the valence bond entanglement entropy does not give a bound on the von Neumann entanglement entropy, and that it exhibits a multiplicative logarithmic correction to the area law that is not present in the scaling of the von Neumann entanglement entropy. We then present a method to measure higher orders of the generalized Renyi entanglement entropies using valence bond quantum Monte Carlo, and show results for the second Renyi entropy. We find the results converge to the exact results for one dimensional Heisenberg spin-1/2 chains, and see that the scaling of the second Renyi entropy follows an area law in the two dimensional Heisenberg ground state.

Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems

Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems
Title Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems PDF eBook
Author Masuo Suzuki
Publisher Springer Science & Business Media
Pages 251
Release 2012-12-06
Genre Science
ISBN 3642831540

Download Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems Book in PDF, Epub and Kindle

Speech by Toyosaburo Taniguchi Dr. Kubo, Chairman, Distinguished Guests, and Friends, I am very happy, pleased and honored to be here this evening with so many distinguished guests, friends, and scholars from within this country and from different parts of the world. The Taniguchi Foundation wishes to extend a warm and sincere welcome to the many participants of the Ninth International Symposium on the Theory of Condensed Matter, which se ries was inaugurated eight years ago through the strenuous efforts of Dr. Ryogo Kubo, who is gracing us today with his presence. We are deeply indebted to Dr. Kubo, Dr. Suzuki, and their associates, who havE' spent an enormous amount of time and effort to make this particular symposium possible. We are convinced that the foundation should not be considered as what makes our symposium a success. The success is entirely due, I feel, to the continuous efforts of the Organizing Committee and of all those who have lent their support to this program. In this sense, your words of praise about the symposium, if any, should be directed to all of them. So far, I have met in person a total of 62 participants in this Division from 12 countries: Argentina, Belgium, Canada, Denmark, the Federal Republic of Germany, France, Ireland, Israel, Rumania, Switzerland, the United Kingdom, and the United States of America, with 133 participants from Japan. Those friends I have been privileged to make, I shall always treasure.

The Monte Carlo Method in Condensed Matter Physics

The Monte Carlo Method in Condensed Matter Physics
Title The Monte Carlo Method in Condensed Matter Physics PDF eBook
Author Kurt Binder
Publisher Springer Science & Business Media
Pages 406
Release 2012-12-06
Genre Science
ISBN 3662028557

Download The Monte Carlo Method in Condensed Matter Physics Book in PDF, Epub and Kindle

The Monte Carlo method is now widely used and commonly accepted as an important and useful tool in solid state physics and related fields. It is broadly recognized that the technique of "computer simulation" is complementary to both analytical theory and experiment, and can significantly contribute to ad vancing the understanding of various scientific problems. Widespread applications of the Monte Carlo method to various fields of the statistical mechanics of condensed matter physics have already been reviewed in two previously published books, namely Monte Carlo Methods in Statistical Physics (Topics Curro Phys. , Vol. 7, 1st edn. 1979, 2ndedn. 1986) and Applications of the Monte Carlo Method in Statistical Physics (Topics Curro Phys. , Vol. 36, 1st edn. 1984, 2nd edn. 1987). Meanwhile the field has continued its rapid growth and expansion, and applications to new fields have appeared that were not treated at all in the above two books (e. g. studies of irreversible growth phenomena, cellular automata, interfaces, and quantum problems on lattices). Also, new methodic aspects have emerged, such as aspects of efficient use of vector com puters or parallel computers, more efficient analysis of simulated systems con figurations, and methods to reduce critical slowing down at i>hase transitions. Taken together with the extensive activity in certain traditional areas of research (simulation of classical and quantum fluids, of macromolecular materials, of spin glasses and quadrupolar glasses, etc.

Quantum Monte Carlo Approaches for Correlated Systems

Quantum Monte Carlo Approaches for Correlated Systems
Title Quantum Monte Carlo Approaches for Correlated Systems PDF eBook
Author Federico Becca
Publisher Cambridge University Press
Pages 287
Release 2017-11-30
Genre Science
ISBN 1108547311

Download Quantum Monte Carlo Approaches for Correlated Systems Book in PDF, Epub and Kindle

Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference for students and researchers working in condensed matter theory or those interested in advanced numerical methods for electronic simulation.