Monte Carlo Modeling for Electron Microscopy and Microanalysis

Monte Carlo Modeling for Electron Microscopy and Microanalysis
Title Monte Carlo Modeling for Electron Microscopy and Microanalysis PDF eBook
Author David C. Joy
Publisher Oxford University Press
Pages 225
Release 1995-04-13
Genre Computers
ISBN 0195358465

Download Monte Carlo Modeling for Electron Microscopy and Microanalysis Book in PDF, Epub and Kindle

This book describes for the first time how Monte Carlo modeling methods can be applied to electron microscopy and microanalysis. Computer programs for two basic types of Monte Carlo simulation are developed from physical models of the electron scattering process--a single scattering program capable of high accuracy but requiring long computation times, and a plural scattering program which is less accurate but much more rapid. Optimized for use on personal computers, the programs provide a real time graphical display of the interaction. The programs are then used as the starting point for the development of programs aimed at studying particular effects in the electron microscope, including backscattering, secondary electron production, EBIC and cathodo-luminescence imaging, and X-ray microanalysis. The computer code is given in a fully annotated format so that it may be readily modified for specific problems. Throughout, the author includes numerous examples of how such applications can be used. Students and professionals using electron microscopes will want to read this important addition to the literature.

Scanning Microscopy for Nanotechnology

Scanning Microscopy for Nanotechnology
Title Scanning Microscopy for Nanotechnology PDF eBook
Author Weilie Zhou
Publisher Springer Science & Business Media
Pages 533
Release 2007-03-09
Genre Technology & Engineering
ISBN 0387396209

Download Scanning Microscopy for Nanotechnology Book in PDF, Epub and Kindle

This book presents scanning electron microscopy (SEM) fundamentals and applications for nanotechnology. It includes integrated fabrication techniques using the SEM, such as e-beam and FIB, and it covers in-situ nanomanipulation of materials. The book is written by international experts from the top nano-research groups that specialize in nanomaterials characterization. The book will appeal to nanomaterials researchers, and to SEM development specialists.

Electron Probe Quantitation

Electron Probe Quantitation
Title Electron Probe Quantitation PDF eBook
Author K.F.J. Heinrich
Publisher Springer Science & Business Media
Pages 412
Release 1991-06-30
Genre Science
ISBN 0306438240

Download Electron Probe Quantitation Book in PDF, Epub and Kindle

In 1968, the National Bureau of Standards (NBS) published Special Publication 298 "Quantitative Electron Probe Microanalysis," which contained proceedings of a seminar held on the subject at NBS in the summer of 1967. This publication received wide interest that continued through the years far beyond expectations. The present volume, also the result of a gathering of international experts, in 1988, at NBS (now the National Institute of Standards and Technology, NIST), is intended to fulfill the same purpose. After years of substantial agreement on the procedures of analysis and data evaluation, several sharply differentiated approaches have developed. These are described in this publi cation with all the details required for practical application. Neither the editors nor NIST wish to endorse any single approach. Rather, we hope that their exposition will stimulate the dialogue which is a prerequisite for technical progress. Additionally, it is expected that those active in research in electron probe microanalysis will appreciate more clearly the areas in which further investigations are warranted.

Scanning Electron Microscopy

Scanning Electron Microscopy
Title Scanning Electron Microscopy PDF eBook
Author Ludwig Reimer
Publisher Springer
Pages 538
Release 2013-11-11
Genre Science
ISBN 3540389679

Download Scanning Electron Microscopy Book in PDF, Epub and Kindle

Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.

Three-Dimensional Electron Microscopy

Three-Dimensional Electron Microscopy
Title Three-Dimensional Electron Microscopy PDF eBook
Author
Publisher Academic Press
Pages 306
Release 2019-07-18
Genre Science
ISBN 0128170190

Download Three-Dimensional Electron Microscopy Book in PDF, Epub and Kindle

Three-Dimensional Electron Microscopy, Volume 152 in the Methods in Cell Biology series, highlights new advances in the field, with this new volume presenting interesting chapters focusing on FIB-SEM of mouse nervous tissue: fast and slow sample preparation, Serial-section electron microscopy using ATUM - Automated Tape collecting Ultra-Microtome, Software for automated acquisition of electron tomography tilt series, Scanning electron tomography of biological samples embedded in plastic, Cryo-STEM tomography for Biology, CryoCARE: Content-aware denoising of cryo-EM images and tomograms using artificial neural networks, Expedited large-volume 3-D SEM workflows for comparative vertebrate microanatomical imaging, and many other interesting topics. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Cell Biology series - Includes the latest information on the Three-Dimensional Electron Microscopy technique

Microscopy Methods in Nanomaterials Characterization

Microscopy Methods in Nanomaterials Characterization
Title Microscopy Methods in Nanomaterials Characterization PDF eBook
Author Sabu Thomas
Publisher Elsevier
Pages 434
Release 2017-05-17
Genre Technology & Engineering
ISBN 0323461476

Download Microscopy Methods in Nanomaterials Characterization Book in PDF, Epub and Kindle

Microscopy Methods in Nanomaterials Characterization fills an important gap in the literature with a detailed look at microscopic and X-ray based characterization of nanomaterials. These microscopic techniques are used for the determination of surface morphology and the dispersion characteristics of nanomaterials. This book deals with the detailed discussion of these aspects, and will provide the reader with a fundamental understanding of morphological tools, such as instrumentation, sample preparation and different kinds of analyses, etc. In addition, it covers the latest developments and trends morphological characterization using a variety of microscopes. Materials scientists, materials engineers and scientists in related disciplines, including chemistry and physics, will find this to be a detailed, method-orientated guide to microscopy methods of nanocharacterization. - Takes a method-orientated approach that includes case studies that illustrate how to carry out each characterization technique - Discusses the advantages and disadvantages of each microscopy characterization technique, giving the reader greater understanding of conditions for different techniques - Presents an in-depth discussion of each technique, allowing the reader to gain a detailed understanding of each

Scanning Electron Microscopy and X-Ray Microanalysis

Scanning Electron Microscopy and X-Ray Microanalysis
Title Scanning Electron Microscopy and X-Ray Microanalysis PDF eBook
Author Joseph Goldstein
Publisher Springer Science & Business Media
Pages 679
Release 2013-11-11
Genre Science
ISBN 1461332737

Download Scanning Electron Microscopy and X-Ray Microanalysis Book in PDF, Epub and Kindle

This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.