Monoidal Categories and Topological Field Theory

Monoidal Categories and Topological Field Theory
Title Monoidal Categories and Topological Field Theory PDF eBook
Author Vladimir Turaev
Publisher Birkhäuser
Pages 513
Release 2017-06-28
Genre Mathematics
ISBN 3319498347

Download Monoidal Categories and Topological Field Theory Book in PDF, Epub and Kindle

This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery graph TQFT derived from the center of that category. The book is of interest to researchers and students studying topological field theory, monoidal categories, Hopf algebras and Hopf monads.

Lectures on Field Theory and Topology

Lectures on Field Theory and Topology
Title Lectures on Field Theory and Topology PDF eBook
Author Daniel S. Freed
Publisher American Mathematical Soc.
Pages 202
Release 2019-08-23
Genre Mathematics
ISBN 1470452065

Download Lectures on Field Theory and Topology Book in PDF, Epub and Kindle

These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.

Frobenius Algebras and 2-D Topological Quantum Field Theories

Frobenius Algebras and 2-D Topological Quantum Field Theories
Title Frobenius Algebras and 2-D Topological Quantum Field Theories PDF eBook
Author Joachim Kock
Publisher Cambridge University Press
Pages 260
Release 2004
Genre Mathematics
ISBN 9780521540315

Download Frobenius Algebras and 2-D Topological Quantum Field Theories Book in PDF, Epub and Kindle

This 2003 book describes a striking connection between topology and algebra, namely that 2D topological quantum field theories are equivalent to commutative Frobenius algebras. The precise formulation of the theorem and its proof is given in terms of monoidal categories, and the main purpose of the book is to develop these concepts from an elementary level, and more generally serve as an introduction to categorical viewpoints in mathematics. Rather than just proving the theorem, it is shown how the result fits into a more general pattern concerning universal monoidal categories for algebraic structures. Throughout, the emphasis is on the interplay between algebra and topology, with graphical interpretation of algebraic operations, and topological structures described algebraically in terms of generators and relations. The book will prove valuable to students or researchers entering this field who will learn a host of modern techniques that will prove useful for future work.

Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners

Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners
Title Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners PDF eBook
Author Thomas Kerler
Publisher Springer
Pages 381
Release 2003-07-01
Genre Mathematics
ISBN 3540446257

Download Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners Book in PDF, Epub and Kindle

This book presents the (to date) most general approach to combinatorial constructions of topological quantum field theories (TQFTs) in three dimensions. The authors describe extended TQFTs as double functors between two naturally defined double categories: one of topological nature, made of 3-manifolds with corners, the other of algebraic nature, made of linear categories, functors, vector spaces and maps. Atiyah's conventional notion of TQFTs as well as the notion of modular functor from axiomatic conformal field theory are unified in this concept. A large class of such extended modular catergory is constructed, assigning a double functor to every abelian modular category, which does not have to be semisimple.

Proceedings of the International Congress of Mathematicians 2010 (icm 2010) (in 4 Volumes) - Vol. I: Plenary Lectures and Ceremonies, Vols. Ii-iv: Invited Lectures

Proceedings of the International Congress of Mathematicians 2010 (icm 2010) (in 4 Volumes) - Vol. I: Plenary Lectures and Ceremonies, Vols. Ii-iv: Invited Lectures
Title Proceedings of the International Congress of Mathematicians 2010 (icm 2010) (in 4 Volumes) - Vol. I: Plenary Lectures and Ceremonies, Vols. Ii-iv: Invited Lectures PDF eBook
Author
Publisher World Scientific
Pages 814
Release 2011
Genre
ISBN 9814324353

Download Proceedings of the International Congress of Mathematicians 2010 (icm 2010) (in 4 Volumes) - Vol. I: Plenary Lectures and Ceremonies, Vols. Ii-iv: Invited Lectures Book in PDF, Epub and Kindle

Lectures on Tensor Categories and Modular Functors

Lectures on Tensor Categories and Modular Functors
Title Lectures on Tensor Categories and Modular Functors PDF eBook
Author Bojko Bakalov
Publisher American Mathematical Soc.
Pages 232
Release 2001
Genre Mathematics
ISBN 0821826867

Download Lectures on Tensor Categories and Modular Functors Book in PDF, Epub and Kindle

This book gives an exposition of the relations among the following three topics: monoidal tensor categories (such as a category of representations of a quantum group), 3-dimensional topological quantum field theory, and 2-dimensional modular functors (which naturally arise in 2-dimensional conformal field theory). The following examples are discussed in detail: the category of representations of a quantum group at a root of unity and the Wess-Zumino-Witten modular functor. The idea that these topics are related first appeared in the physics literature in the study of quantum field theory. Pioneering works of Witten and Moore-Seiberg triggered an avalanche of papers, both physical and mathematical, exploring various aspects of these relations. Upon preparing to lecture on the topic at MIT, however, the authors discovered that the existing literature was difficult and that there were gaps to fill. The text is wholly expository and finely succinct. It gathers results, fills existing gaps, and simplifies some proofs. The book makes an important addition to the existing literature on the topic. It would be suitable as a course text at the advanced-graduate level.

Homotopy Quantum Field Theory

Homotopy Quantum Field Theory
Title Homotopy Quantum Field Theory PDF eBook
Author Vladimir G. Turaev
Publisher European Mathematical Society
Pages 300
Release 2010
Genre Mathematics
ISBN 9783037190869

Download Homotopy Quantum Field Theory Book in PDF, Epub and Kindle

Homotopy Quantum Field Theory (HQFT) is a branch of Topological Quantum Field Theory founded by E. Witten and M. Atiyah. It applies ideas from theoretical physics to study principal bundles over manifolds and, more generally, homotopy classes of maps from manifolds to a fixed target space. This book is the first systematic exposition of Homotopy Quantum Field Theory. It starts with a formal definition of an HQFT and provides examples of HQFTs in all dimensions. The main body of the text is focused on $2$-dimensional and $3$-dimensional HQFTs. A study of these HQFTs leads to new algebraic objects: crossed Frobenius group-algebras, crossed ribbon group-categories, and Hopf group-coalgebras. These notions and their connections with HQFTs are discussed in detail. The text ends with several appendices including an outline of recent developments and a list of open problems. Three appendices by M. Muger and A. Virelizier summarize their work in this area. The book is addressed to mathematicians, theoretical physicists, and graduate students interested in topological aspects of quantum field theory. The exposition is self-contained and well suited for a one-semester graduate course. Prerequisites include only basics of algebra and topology.