Molecular Modeling
Title | Molecular Modeling PDF eBook |
Author | Hans-Dieter Höltje |
Publisher | John Wiley & Sons |
Pages | 206 |
Release | 2008-07-11 |
Genre | Science |
ISBN | 3527614761 |
Written by experienced experts in molecular modeling, this books describes the basics to the extent that is necessary if one wants to be able to reliably judge the results from molecular modeling calculations. Its main objective is the description of the various pitfalls to be avoided. Without unnecessary overhead it leads the reader from simple calculations on small molecules to the modeling of proteins and other relevant biomolecules. A textbook for beginners as well as an invaluable reference for all those dealing with molecular modeling in their daily work!
Molecular Modelling: Principles And Applications, 2/E
Title | Molecular Modelling: Principles And Applications, 2/E PDF eBook |
Author | Leach |
Publisher | Pearson Education India |
Pages | 788 |
Release | 2009-09 |
Genre | Molecular structure |
ISBN | 9788131728604 |
Molecular Modelling
Title | Molecular Modelling PDF eBook |
Author | Andrew R. Leach |
Publisher | Pearson Education |
Pages | 788 |
Release | 2001 |
Genre | Science |
ISBN | 9780582382107 |
Book is in the Baton Rouge Library (08/14/06).
Understanding Molecular Simulation
Title | Understanding Molecular Simulation PDF eBook |
Author | Daan Frenkel |
Publisher | Elsevier |
Pages | 661 |
Release | 2001-10-19 |
Genre | Science |
ISBN | 0080519989 |
Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.
Molecular Modelling for Beginners
Title | Molecular Modelling for Beginners PDF eBook |
Author | Alan Hinchliffe |
Publisher | John Wiley & Sons |
Pages | 369 |
Release | 2011-08-17 |
Genre | Science |
ISBN | 1119964814 |
A concise, basic introduction to modelling and computational chemistry which focuses on the essentials, including MM, MC, and MD, along with a chapter devoted to QSAR and Discovery Chemistry. Includes supporting website featuring background information, full colour illustrations, questions and answers tied into the text,Visual Basic packages and many realistic examples with solutions Takes a hands-on approach, using state of the art software packages G03/W and/or Hyperchem, Gaussian .gjf files and sample outputs. Revised with changes in emphasis and presentation to appeal to the modern student.
Molecular Modeling of the Sensitivities of Energetic Materials
Title | Molecular Modeling of the Sensitivities of Energetic Materials PDF eBook |
Author | Didier Mathieu |
Publisher | Elsevier |
Pages | 488 |
Release | 2022-04-01 |
Genre | Science |
ISBN | 0128231106 |
Molecular Modeling of the Sensitivities of Energetic Materials, Volume 22 introduces experimental aspects, explores the relationships between sensitivity, molecular structure and crystal structure, discusses insights from numerical simulations, and highlights applications of these approaches to the design of new materials. Providing practical guidelines for implementing predictive models and their application to the search for new compounds, this book is an authoritative guide to an exciting field of research that warrants a computer-aided approach for the investigation and design of safe and powerful explosives or propellants. Much recent effort has been put into modeling sensitivities, with most work focusing on impact sensitivity and leading to a lot of experimental data in this area. Models must therefore be developed to allow evaluation of significant properties from the structure of constitutive molecules. - Highlights a range of approaches for computational simulation and the importance of combining them to accurately understand or estimate different parameters - Provides an overview of experimental findings and knowledge in a quick and accessible format - Presents guidelines to implement sensitivity models using open-source python-related software, thus supporting easy implementation of flexible models and allowing fast assessment of hypotheses
Statistical Mechanics: Theory and Molecular Simulation
Title | Statistical Mechanics: Theory and Molecular Simulation PDF eBook |
Author | Mark Tuckerman |
Publisher | OUP Oxford |
Pages | 719 |
Release | 2010-02-11 |
Genre | Science |
ISBN | 0191523461 |
Complex systems that bridge the traditional disciplines of physics, chemistry, biology, and materials science can be studied at an unprecedented level of detail using increasingly sophisticated theoretical methodology and high-speed computers. The aim of this book is to prepare burgeoning users and developers to become active participants in this exciting and rapidly advancing research area by uniting for the first time, in one monograph, the basic concepts of equilibrium and time-dependent statistical mechanics with the modern techniques used to solve the complex problems that arise in real-world applications. The book contains a detailed review of classical and quantum mechanics, in-depth discussions of the most commonly used ensembles simultaneously with modern computational techniques such as molecular dynamics and Monte Carlo, and important topics including free-energy calculations, linear-response theory, harmonic baths and the generalized Langevin equation, critical phenomena, and advanced conformational sampling methods. Burgeoning users and developers are thus provided firm grounding to become active participants in this exciting and rapidly advancing research area, while experienced practitioners will find the book to be a useful reference tool for the field.