Molecular Electronics

Molecular Electronics
Title Molecular Electronics PDF eBook
Author Juan Carlos Cuevas
Publisher World Scientific
Pages 724
Release 2010
Genre Science
ISBN 9814282588

Download Molecular Electronics Book in PDF, Epub and Kindle

This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.

Molecular Electronics: An Introduction To Theory And Experiment

Molecular Electronics: An Introduction To Theory And Experiment
Title Molecular Electronics: An Introduction To Theory And Experiment PDF eBook
Author Elke Scheer
Publisher World Scientific
Pages 724
Release 2010-06-23
Genre Science
ISBN 9814466913

Download Molecular Electronics: An Introduction To Theory And Experiment Book in PDF, Epub and Kindle

This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general.Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.

Molecular Electronics: An Introduction To Theory And Experiment (2nd Edition)

Molecular Electronics: An Introduction To Theory And Experiment (2nd Edition)
Title Molecular Electronics: An Introduction To Theory And Experiment (2nd Edition) PDF eBook
Author Elke Scheer
Publisher World Scientific
Pages 846
Release 2017-05-19
Genre Technology & Engineering
ISBN 9813226048

Download Molecular Electronics: An Introduction To Theory And Experiment (2nd Edition) Book in PDF, Epub and Kindle

Molecular Electronics is self-contained and unified in its presentation. It can be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included in this new edition are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.

A Practical Introduction to the Simulation of Molecular Systems

A Practical Introduction to the Simulation of Molecular Systems
Title A Practical Introduction to the Simulation of Molecular Systems PDF eBook
Author Martin J. Field
Publisher Cambridge University Press
Pages 294
Release 2007-07-19
Genre Science
ISBN 1139465813

Download A Practical Introduction to the Simulation of Molecular Systems Book in PDF, Epub and Kindle

Molecular simulation is a powerful tool in materials science, physics, chemistry and biomolecular fields. This updated edition provides a pragmatic introduction to a wide range of techniques for the simulation of molecular systems at the atomic level. The first part concentrates on methods for calculating the potential energy of a molecular system, with new chapters on quantum chemical, molecular mechanical and hybrid potential techniques. The second part describes methods examining conformational, dynamical and thermodynamical properties of systems, covering techniques including geometry-optimization, normal-mode analysis, molecular dynamics, and Monte Carlo simulation. Using Python, the second edition includes numerous examples and program modules for each simulation technique, allowing the reader to perform the calculations and appreciate the inherent difficulties involved in each. This is a valuable resource for researchers and graduate students wanting to know how to use atomic-scale molecular simulations. Supplementary material, including the program library and technical information, available through www.cambridge.org/9780521852524.

Computational Chemistry

Computational Chemistry
Title Computational Chemistry PDF eBook
Author Errol G. Lewars
Publisher Springer Science & Business Media
Pages 474
Release 2007-05-08
Genre Science
ISBN 0306483912

Download Computational Chemistry Book in PDF, Epub and Kindle

Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.

An Introduction to Molecular Orbitals

An Introduction to Molecular Orbitals
Title An Introduction to Molecular Orbitals PDF eBook
Author Yves Jean
Publisher Oxford University Press on Demand
Pages 337
Release 1993
Genre Science
ISBN 9780195069181

Download An Introduction to Molecular Orbitals Book in PDF, Epub and Kindle

This text for advanced undergraduate and graduate students guides the reader through a smooth progression from the most elementary ideas of molecular orbital theory to an understanding of the electronic structure, geometry, and reactivity of large molecules. It starts with simple molecules and proceeds to relatively large organometallic complexes. The slant is theoretical, but in the last chapter the authors strengthen the link between theory and experiment. Focusing on basic concepts, the authors take a qualitative approach, which enables this text to fill a void in the undergraduate curriculum. The book is intended as a core or supplementary text in an advanced chemistry course.

Effects of Electric Fields on Structure and Reactivity

Effects of Electric Fields on Structure and Reactivity
Title Effects of Electric Fields on Structure and Reactivity PDF eBook
Author Sason Shaik
Publisher Royal Society of Chemistry
Pages 447
Release 2021-03-05
Genre Science
ISBN 1839163046

Download Effects of Electric Fields on Structure and Reactivity Book in PDF, Epub and Kindle

Electric-field-mediated chemistry is an emerging topic that is rapidly growing and fanning out in many directions. It involves theoretical and experimental aspects, as well as intense interplay between them, including breakthrough achievements such as the proof-of-principle that a Diels–Alder reaction, which involves two simultaneous C–C bond making events, can be catalysed or inhibited simply by changing the direction of an oriented external-electric field (OEEF). This productive interplay between the theoretical and experimental branches of chemistry is continuing, and gradually defining a new sub-field wherein various sources of electric fields, whether external or built-in and designed, or even surface induced fields (plasmons), are brought to bear on chemical reactions, molecular structures, and nano-systems, leading to control of reactivity, selectivity, chirality, molecular orientations, changes in structure, and in dynamics. Written by leaders in the field, Effects of Electric Fields on Structure and Reactivity is the first book on this exciting topic. Starting with an overview of the theory behind – and demonstrations of the effect of – electric fields on structure and reactivity, this accessible reference work aims to encourage those new to the field to consider harnessing these effects in their own work. Covering applications and recent theoretical developments, it is a useful resource for theoretical chemists and experimentalists alike.