Moduli Spaces and Vector Bundles

Moduli Spaces and Vector Bundles
Title Moduli Spaces and Vector Bundles PDF eBook
Author Steve Bradlow
Publisher Cambridge University Press
Pages 516
Release 2009-05-21
Genre Mathematics
ISBN 0521734711

Download Moduli Spaces and Vector Bundles Book in PDF, Epub and Kindle

Coverage includes foundational material as well as current research, authored by top specialists within their fields.

Introduction to Moduli Problems and Orbit Spaces

Introduction to Moduli Problems and Orbit Spaces
Title Introduction to Moduli Problems and Orbit Spaces PDF eBook
Author P. E. Newstead
Publisher Alpha Science International Limited
Pages 166
Release 2012
Genre Mathematics
ISBN 9788184871623

Download Introduction to Moduli Problems and Orbit Spaces Book in PDF, Epub and Kindle

Geometric Invariant Theory (GIT), developed in the 1960s by David Mumford, is the theory of quotients by group actions in Algebraic Geometry. Its principal application is to the construction of various moduli spaces. Peter Newstead gave a series of lectures in 1975 at the Tata Institute of Fundamental Research, Mumbai on GIT and its application to the moduli of vector bundles on curves. It was a masterful yet easy to follow exposition of important material, with clear proofs and many examples. The notes, published as a volume in the TIFR lecture notes series, became a classic, and generations of algebraic geometers working in these subjects got their basic introduction to this area through these lecture notes. Though continuously in demand, these lecture notes have been out of print for many years. The Tata Institute is happy to re-issue these notes in a new print.

Algebraic Surfaces and Holomorphic Vector Bundles

Algebraic Surfaces and Holomorphic Vector Bundles
Title Algebraic Surfaces and Holomorphic Vector Bundles PDF eBook
Author Robert Friedman
Publisher Springer Science & Business Media
Pages 333
Release 2012-12-06
Genre Mathematics
ISBN 1461216885

Download Algebraic Surfaces and Holomorphic Vector Bundles Book in PDF, Epub and Kindle

A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.

Moduli of Vector Bundles

Moduli of Vector Bundles
Title Moduli of Vector Bundles PDF eBook
Author Masaki Maruyama
Publisher CRC Press
Pages 324
Release 2023-05-31
Genre Mathematics
ISBN 1000950700

Download Moduli of Vector Bundles Book in PDF, Epub and Kindle

"Contains papers presented at the 35th Taniguchi International Symposium held recently in Sanda and Kyoto, Japan. Details the latest developments concerning moduli spaces of vector bundles or instantons and their application. Covers a broad array of topics in both differential and algebraic geometry."

The Geometry of Moduli Spaces of Sheaves

The Geometry of Moduli Spaces of Sheaves
Title The Geometry of Moduli Spaces of Sheaves PDF eBook
Author Daniel Huybrechts
Publisher Cambridge University Press
Pages 345
Release 2010-05-27
Genre Mathematics
ISBN 1139485822

Download The Geometry of Moduli Spaces of Sheaves Book in PDF, Epub and Kindle

This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.

Lectures on Vector Bundles

Lectures on Vector Bundles
Title Lectures on Vector Bundles PDF eBook
Author J. Le Potier
Publisher Cambridge University Press
Pages 260
Release 1997-01-28
Genre Mathematics
ISBN 9780521481823

Download Lectures on Vector Bundles Book in PDF, Epub and Kindle

This work consists of two sections on the moduli spaces of vector bundles. The first part tackles the classification of vector bundles on algebraic curves. The author also discusses the construction and elementary properties of the moduli spaces of stable bundles. In particular Le Potier constructs HilbertSHGrothendieck schemes of vector bundles, and treats Mumford's geometric invariant theory. The second part centers on the structure of the moduli space of semistable sheaves on the projective plane. The author sketches existence conditions for sheaves of given rank, and Chern class and construction ideas in the general context of projective algebraic surfaces. Professor Le Potier provides a treatment of vector bundles that will be welcomed by experienced algebraic geometers and novices alike.

Vector Bundles on Complex Projective Spaces

Vector Bundles on Complex Projective Spaces
Title Vector Bundles on Complex Projective Spaces PDF eBook
Author Christian Okonek
Publisher Springer Science & Business Media
Pages 399
Release 2013-11-11
Genre Mathematics
ISBN 1475714602

Download Vector Bundles on Complex Projective Spaces Book in PDF, Epub and Kindle

These lecture notes are intended as an introduction to the methods of classification of holomorphic vector bundles over projective algebraic manifolds X. To be as concrete as possible we have mostly restricted ourselves to the case X = Fn. According to Serre (GAGA) the classification of holomorphic vector bundles is equivalent to the classification of algebraic vector bundles. Here we have used almost exclusively the language of analytic geometry. The book is intended for students who have a basic knowledge of analytic and (or) algebraic geometry. Some funda mental results from these fields are summarized at the beginning. One of the authors gave a survey in the Seminaire Bourbaki 1978 on the current state of the classification of holomorphic vector bundles overFn. This lecture then served as the basis for a course of lectures in Gottingen in the Winter Semester 78/79. The present work is an extended and up-dated exposition of that course. Because of the introductory nature of this book we have had to leave out some difficult topics such as the restriction theorem of Barth. As compensation we have appended to each sec tion a paragraph in which historical remarks are made, further results indicated and unsolved problems presented. The book is divided into two chapters. Each chapter is subdivided into several sections which in turn are made up of a number of paragraphs. Each section is preceeded by a short description of iv its contents.