Modular Curves and Abelian Varieties

Modular Curves and Abelian Varieties
Title Modular Curves and Abelian Varieties PDF eBook
Author John Cremona
Publisher Birkhäuser
Pages 291
Release 2012-12-06
Genre Mathematics
ISBN 3034879199

Download Modular Curves and Abelian Varieties Book in PDF, Epub and Kindle

This book presents lectures from a conference on "Modular Curves and Abelian Varieties'' at the Centre de Recerca Matemtica (Bellaterra, Barcelona). The articles in this volume present the latest achievements in this extremely active field and will be of interest both to specialists and to students and researchers. Many contributions focus on generalizations of the Shimura-Taniyama conjecture to varieties such as elliptic Q-curves and Abelian varieties of GL_2-type. The book also includes several key articles in the subject that do not correspond to conference lectures.

Modular Curves and Abelian Varieties

Modular Curves and Abelian Varieties
Title Modular Curves and Abelian Varieties PDF eBook
Author John Cremona
Publisher Springer Science & Business Media
Pages 308
Release 2004-02-23
Genre Mathematics
ISBN 9783764365868

Download Modular Curves and Abelian Varieties Book in PDF, Epub and Kindle

This book presents lectures from a conference on "Modular Curves and Abelian Varieties'' at the Centre de Recerca Matemàtica (Bellaterra, Barcelona). The articles in this volume present the latest achievements in this extremely active field and will be of interest both to specialists and to students and researchers. Many contributions focus on generalizations of the Shimura-Taniyama conjecture to varieties such as elliptic Q-curves and Abelian varieties of GL_2-type. The book also includes several key articles in the subject that do not correspond to conference lectures.

Abelian l-Adic Representations and Elliptic Curves

Abelian l-Adic Representations and Elliptic Curves
Title Abelian l-Adic Representations and Elliptic Curves PDF eBook
Author Jean-Pierre Serre
Publisher CRC Press
Pages 203
Release 1997-11-15
Genre Mathematics
ISBN 1439863865

Download Abelian l-Adic Representations and Elliptic Curves Book in PDF, Epub and Kindle

This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one

A First Course in Modular Forms

A First Course in Modular Forms
Title A First Course in Modular Forms PDF eBook
Author Fred Diamond
Publisher Springer Science & Business Media
Pages 462
Release 2006-03-30
Genre Mathematics
ISBN 0387272267

Download A First Course in Modular Forms Book in PDF, Epub and Kindle

This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.

Moduli of Curves and Abelian Varieties

Moduli of Curves and Abelian Varieties
Title Moduli of Curves and Abelian Varieties PDF eBook
Author Carel Faber
Publisher Springer Science & Business Media
Pages 205
Release 2012-12-06
Genre Technology & Engineering
ISBN 3322901726

Download Moduli of Curves and Abelian Varieties Book in PDF, Epub and Kindle

The Dutch Intercity Seminar on Moduli, which dates back to the early eighties, was an initiative of G. van der Geer, F. Oort and C. Peters. Through the years it became a focal point of Dutch mathematics and it gained some fame, also outside Holland, as an active biweekly research seminar. The tradition continues up to today. The present volume, with contributions of R. Dijkgraaf, C. Faber, G. van der Geer, R. Hain, E. Looijenga, and F. Oort, originates from the seminar held in 1995--96. Some of the articles here were discussed, in preliminary form, in the seminar; others are completely new. Two introductory papers, on moduli of abelian varieties and on moduli of curves, accompany the articles.

The Arithmetic of Elliptic Curves

The Arithmetic of Elliptic Curves
Title The Arithmetic of Elliptic Curves PDF eBook
Author Joseph H. Silverman
Publisher Springer Science & Business Media
Pages 414
Release 2013-03-09
Genre Mathematics
ISBN 1475719205

Download The Arithmetic of Elliptic Curves Book in PDF, Epub and Kindle

The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.

Modular Forms and Fermat’s Last Theorem

Modular Forms and Fermat’s Last Theorem
Title Modular Forms and Fermat’s Last Theorem PDF eBook
Author Gary Cornell
Publisher Springer Science & Business Media
Pages 592
Release 2013-12-01
Genre Mathematics
ISBN 1461219744

Download Modular Forms and Fermat’s Last Theorem Book in PDF, Epub and Kindle

This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.