Modular and incremental global model management with extended generalized discrimination networks

Modular and incremental global model management with extended generalized discrimination networks
Title Modular and incremental global model management with extended generalized discrimination networks PDF eBook
Author Matthias Barkowsky
Publisher Universitätsverlag Potsdam
Pages 70
Release 2023-06-06
Genre Computers
ISBN 3869565551

Download Modular and incremental global model management with extended generalized discrimination networks Book in PDF, Epub and Kindle

Complex projects developed under the model-driven engineering paradigm nowadays often involve several interrelated models, which are automatically processed via a multitude of model operations. Modular and incremental construction and execution of such networks of models and model operations are required to accommodate efficient development with potentially large-scale models. The underlying problem is also called Global Model Management. In this report, we propose an approach to modular and incremental Global Model Management via an extension to the existing technique of Generalized Discrimination Networks (GDNs). In addition to further generalizing the notion of query operations employed in GDNs, we adapt the previously query-only mechanism to operations with side effects to integrate model transformation and model synchronization. We provide incremental algorithms for the execution of the resulting extended Generalized Discrimination Networks (eGDNs), as well as a prototypical implementation for a number of example eGDN operations. Based on this prototypical implementation, we experiment with an application scenario from the software development domain to empirically evaluate our approach with respect to scalability and conceptually demonstrate its applicability in a typical scenario. Initial results confirm that the presented approach can indeed be employed to realize efficient Global Model Management in the considered scenario.

Triple graph grammars for multi-version models

Triple graph grammars for multi-version models
Title Triple graph grammars for multi-version models PDF eBook
Author Matthias Barkowsky
Publisher Universitätsverlag Potsdam
Pages 36
Release 2023-06-06
Genre Computers
ISBN 386956556X

Download Triple graph grammars for multi-version models Book in PDF, Epub and Kindle

Like conventional software projects, projects in model-driven software engineering require adequate management of multiple versions of development artifacts, importantly allowing living with temporary inconsistencies. In the case of model-driven software engineering, employed versioning approaches also have to handle situations where different artifacts, that is, different models, are linked via automatic model transformations. In this report, we propose a technique for jointly handling the transformation of multiple versions of a source model into corresponding versions of a target model, which enables the use of a more compact representation that may afford improved execution time of both the transformation and further analysis operations. Our approach is based on the well-known formalism of triple graph grammars and a previously introduced encoding of model version histories called multi-version models. In addition to showing the correctness of our approach with respect to the standard semantics of triple graph grammars, we conduct an empirical evaluation that demonstrates the potential benefit regarding execution time performance.

Digital sovereignty

Digital sovereignty
Title Digital sovereignty PDF eBook
Author Christoph Meinel
Publisher Universitätsverlag Potsdam
Pages 34
Release 2023-11-27
Genre
ISBN 3869565616

Download Digital sovereignty Book in PDF, Epub and Kindle

Digital technology offers significant political, economic, and societal opportunities. At the same time, the notion of digital sovereignty has become a leitmotif in German discourse: the state’s capacity to assume its responsibilities and safeguard society’s – and individuals’ – ability to shape the digital transformation in a self-determined way. The education sector is exemplary for the challenge faced by Germany, and indeed Europe, of harnessing the benefits of digital technology while navigating concerns around sovereignty. It encompasses education as a core public good, a rapidly growing field of business, and growing pools of highly sensitive personal data. The report describes pathways to mitigating the tension between digitalization and sovereignty at three different levels – state, economy, and individual – through the lens of concrete technical projects in the education sector: the HPI Schul-Cloud (state sovereignty), the MERLOT data spaces (economic sovereignty), and the openHPI platform (individual sovereignty).

HPI Future SOC Lab – Proceedings 2020

HPI Future SOC Lab – Proceedings 2020
Title HPI Future SOC Lab – Proceedings 2020 PDF eBook
Author Christoph Meinel
Publisher Universitätsverlag Potsdam
Pages 160
Release 2024-08-09
Genre
ISBN 3869565659

Download HPI Future SOC Lab – Proceedings 2020 Book in PDF, Epub and Kindle

The “HPI Future SOC Lab” is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2020. Selected projects have presented their results on April 21st and November 10th 2020 at the Future SOC Lab Day events.

HPI Future SOC Lab – Proceedings 2019

HPI Future SOC Lab – Proceedings 2019
Title HPI Future SOC Lab – Proceedings 2019 PDF eBook
Author Christoph Meinel
Publisher Universitätsverlag Potsdam
Pages 320
Release 2024-06-28
Genre
ISBN 3869565640

Download HPI Future SOC Lab – Proceedings 2019 Book in PDF, Epub and Kindle

EN The “HPI Future SOC Lab” is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2019. Selected projects have presented their results on April 9th and November 12th 2019 at the Future SOC Lab Day events. DE Das Future SOC Lab am HPI ist eine Kooperation des Hasso-Plattner-Instituts mit verschiedenen Industriepartnern. Seine Aufgabe ist die Ermöglichung und Förderung des Austausches zwischen Forschungsgemeinschaft und Industrie. Am Lab wird interessierten Wissenschaftlern eine Infrastruktur von neuester Hard- und Software kostenfrei für Forschungszwecke zur Verfügung gestellt. Dazu zählen teilweise noch nicht am Markt verfügbare Technologien, die im normalen Hochschulbereich in der Regel nicht zu finanzieren wären, bspw. Server mit bis zu 64 Cores und 2 TB Hauptspeicher. Diese Angebote richten sich insbesondere an Wissenschaftler in den Gebieten Informatik und Wirtschaftsinformatik. Einige der Schwerpunkte sind Cloud Computing, Parallelisierung und In-Memory Technologien. In diesem Technischen Bericht werden die Ergebnisse der Forschungsprojekte des Jahres 2019 vorgestellt. Ausgewählte Projekte stellten ihre Ergebnisse am 09. April und 12. November 2019 im Rahmen des Future SOC Lab Tags vor.

Dissertation Abstracts International

Dissertation Abstracts International
Title Dissertation Abstracts International PDF eBook
Author
Publisher
Pages 862
Release 1999
Genre Dissertations, Academic
ISBN

Download Dissertation Abstracts International Book in PDF, Epub and Kindle

Reinforcement Learning, second edition

Reinforcement Learning, second edition
Title Reinforcement Learning, second edition PDF eBook
Author Richard S. Sutton
Publisher MIT Press
Pages 549
Release 2018-11-13
Genre Computers
ISBN 0262352702

Download Reinforcement Learning, second edition Book in PDF, Epub and Kindle

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.