Modelling and Parameter Estimation of Dynamic Systems
Title | Modelling and Parameter Estimation of Dynamic Systems PDF eBook |
Author | J.R. Raol |
Publisher | IET |
Pages | 405 |
Release | 2004-08-13 |
Genre | Mathematics |
ISBN | 0863413633 |
This book presents a detailed examination of the estimation techniques and modeling problems. The theory is furnished with several illustrations and computer programs to promote better understanding of system modeling and parameter estimation.
Identification of Dynamic Systems
Title | Identification of Dynamic Systems PDF eBook |
Author | Rolf Isermann |
Publisher | Springer |
Pages | 705 |
Release | 2011-04-08 |
Genre | Technology & Engineering |
ISBN | 9783540871552 |
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Numerical Data Fitting in Dynamical Systems
Title | Numerical Data Fitting in Dynamical Systems PDF eBook |
Author | Klaus Schittkowski |
Publisher | Springer Science & Business Media |
Pages | 416 |
Release | 2002-12-31 |
Genre | Computers |
ISBN | 9781402010798 |
Real life phenomena in engineering, natural, or medical sciences are often described by a mathematical model with the goal to analyze numerically the behaviour of the system. Advantages of mathematical models are their cheap availability, the possibility of studying extreme situations that cannot be handled by experiments, or of simulating real systems during the design phase before constructing a first prototype. Moreover, they serve to verify decisions, to avoid expensive and time consuming experimental tests, to analyze, understand, and explain the behaviour of systems, or to optimize design and production. As soon as a mathematical model contains differential dependencies from an additional parameter, typically the time, we call it a dynamical model. There are two key questions always arising in a practical environment: 1 Is the mathematical model correct? 2 How can I quantify model parameters that cannot be measured directly? In principle, both questions are easily answered as soon as some experimental data are available. The idea is to compare measured data with predicted model function values and to minimize the differences over the whole parameter space. We have to reject a model if we are unable to find a reasonably accurate fit. To summarize, parameter estimation or data fitting, respectively, is extremely important in all practical situations, where a mathematical model and corresponding experimental data are available to describe the behaviour of a dynamical system.
Mathematical and Computational Modeling and Simulation
Title | Mathematical and Computational Modeling and Simulation PDF eBook |
Author | Dietmar Möller |
Publisher | Springer |
Pages | 444 |
Release | 2004 |
Genre | Computers |
ISBN |
Mathematical and Computational Modeling and Simulation - a highly multi-disciplinary field with ubiquitous applications in science and engineering - is one of the key enabling technologies of the 21st century. This book introduces the reader to the use of mathematical and computational modeling and simulation in order to develop an understanding of the solution characteristics of a broad class of real-world problems. The relevant basic and advanced methodologies are explained in detail, with special emphasis on ill-defined problems. Some 15 simulation systems are presented on the language and the logical level. Moreover, the reader can accumulate experience by studying a wide variety of case studies. The latter are briefly described within the book but their full versions as well as some simulation software demos are available on the Web. The book can be used for university courses of different levels as well as for self-study. Advanced sections are marked and can be skipped in a first reading or in undergraduate courses.
Analytical Methods for Dynamic Modelers
Title | Analytical Methods for Dynamic Modelers PDF eBook |
Author | Hazhir Rahmandad |
Publisher | MIT Press |
Pages | 443 |
Release | 2015-11-27 |
Genre | Business & Economics |
ISBN | 0262331438 |
A user-friendly introduction to some of the most useful analytical tools for model building, estimation, and analysis, presenting key methods and examples. Simulation modeling is increasingly integrated into research and policy analysis of complex sociotechnical systems in a variety of domains. Model-based analysis and policy design inform a range of applications in fields from economics to engineering to health care. This book offers a hands-on introduction to key analytical methods for dynamic modeling. Bringing together tools and methodologies from fields as diverse as computational statistics, econometrics, and operations research in a single text, the book can be used for graduate-level courses and as a reference for dynamic modelers who want to expand their methodological toolbox. The focus is on quantitative techniques for use by dynamic modelers during model construction and analysis, and the material presented is accessible to readers with a background in college-level calculus and statistics. Each chapter describes a key method, presenting an introduction that emphasizes the basic intuition behind each method, tutorial style examples, references to key literature, and exercises. The chapter authors are all experts in the tools and methods they present. The book covers estimation of model parameters using quantitative data; understanding the links between model structure and its behavior; and decision support and optimization. An online appendix offers computer code for applications, models, and solutions to exercises. Contributors Wenyi An, Edward G. Anderson Jr., Yaman Barlas, Nishesh Chalise, Robert Eberlein, Hamed Ghoddusi, Winfried Grassmann, Peter S. Hovmand, Mohammad S. Jalali, Nitin Joglekar, David Keith, Juxin Liu, Erling Moxnes, Rogelio Oliva, Nathaniel D. Osgood, Hazhir Rahmandad, Raymond Spiteri, John Sterman, Jeroen Struben, Burcu Tan, Karen Yee, Gönenç Yücel
Estimators for Uncertain Dynamic Systems
Title | Estimators for Uncertain Dynamic Systems PDF eBook |
Author | A.I. Matasov |
Publisher | Springer Science & Business Media |
Pages | 428 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 9401153221 |
When solving the control and design problems in aerospace and naval engi neering, energetics, economics, biology, etc., we need to know the state of investigated dynamic processes. The presence of inherent uncertainties in the description of these processes and of noises in measurement devices leads to the necessity to construct the estimators for corresponding dynamic systems. The estimators recover the required information about system state from mea surement data. An attempt to solve the estimation problems in an optimal way results in the formulation of different variational problems. The type and complexity of these variational problems depend on the process model, the model of uncertainties, and the estimation performance criterion. A solution of variational problem determines an optimal estimator. Howerever, there exist at least two reasons why we use nonoptimal esti mators. The first reason is that the numerical algorithms for solving the corresponding variational problems can be very difficult for numerical imple mentation. For example, the dimension of these algorithms can be very high.
Applied Parameter Estimation for Chemical Engineers
Title | Applied Parameter Estimation for Chemical Engineers PDF eBook |
Author | Peter Englezos |
Publisher | CRC Press |
Pages | 462 |
Release | 2000-10-12 |
Genre | Science |
ISBN | 9780203904695 |
This book determines adjustable parameters in mathematical models that describe steady state or dynamic systems, presenting the most important optimization methods used for parameter estimation. It focuses on the Gauss-Newton method and its modifications for systems and processes represented by algebraic or differential equation models.