Modelling, Analysis, and Control of Dynamic Elastic Multi-link Structures

Modelling, Analysis, and Control of Dynamic Elastic Multi-link Structures
Title Modelling, Analysis, and Control of Dynamic Elastic Multi-link Structures PDF eBook
Author J. Lagnese
Publisher
Pages 418
Release 1994
Genre Distributed parameter systems
ISBN

Download Modelling, Analysis, and Control of Dynamic Elastic Multi-link Structures Book in PDF, Epub and Kindle

Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures

Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures
Title Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures PDF eBook
Author J.E. Lagnese
Publisher Springer Science & Business Media
Pages 398
Release 2012-12-06
Genre Mathematics
ISBN 1461202736

Download Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures Book in PDF, Epub and Kindle

The purpose of this monograph is threefold. First, mathematical models of the transient behavior of some or all of the state variables describing the motion of multiple-link flexible structures will be developed. The structures which we have in mind consist of finitely many interconnected flexible ele ments such as strings, beams, plates and shells or combinations thereof and are representative of trusses, frames, robot arms, solar panels, antennae, deformable mirrors, etc. , currently in use. For example, a typical subsys tem found in almost all aircraft and space vehicles consists of beam, plate and/or shell elements attached to each other in a rigid or flexible manner. Due to limitations on their weights, the elements themselves must be highly flexible, and due to limitations on their initial configuration (i. e. , before de ployment), those aggregates often have to contain several links so that the substructure may be unfolded or telescoped once it is deployed. The point of view we wish to adopt is that in order to understand completely the dynamic response of a complex elastic structure it is not sufficient to con to take into account the sider only its global motion but also necessary flexibility of individual elements and the interaction and transmission of elastic effects such as bending, torsion and axial deformations at junctions where members are connected to each other. The second object of this book is to provide rigorous mathematical analyses of the resulting models.

Stability of Elastic Multi-Link Structures

Stability of Elastic Multi-Link Structures
Title Stability of Elastic Multi-Link Structures PDF eBook
Author Kaïs Ammari
Publisher Springer Nature
Pages 146
Release 2022-01-16
Genre Mathematics
ISBN 3030863514

Download Stability of Elastic Multi-Link Structures Book in PDF, Epub and Kindle

This brief investigates the asymptotic behavior of some PDEs on networks. The structures considered consist of finitely interconnected flexible elements such as strings and beams (or combinations thereof), distributed along a planar network. Such study is motivated by the need for engineers to eliminate vibrations in some dynamical structures consisting of elastic bodies, coupled in the form of chain or graph such as pipelines and bridges. There are other complicated examples in the automotive industry, aircraft and space vehicles, containing rather than strings and beams, plates and shells. These multi-body structures are often complicated, and the mathematical models describing their evolution are quite complex. For the sake of simplicity, this volume considers only 1-d networks.

The Control Handbook (three volume set)

The Control Handbook (three volume set)
Title The Control Handbook (three volume set) PDF eBook
Author William S. Levine
Publisher CRC Press
Pages 3379
Release 2018-10-08
Genre Technology & Engineering
ISBN 1420073672

Download The Control Handbook (three volume set) Book in PDF, Epub and Kindle

At publication, The Control Handbook immediately became the definitive resource that engineers working with modern control systems required. Among its many accolades, that first edition was cited by the AAP as the Best Engineering Handbook of 1996. Now, 15 years later, William Levine has once again compiled the most comprehensive and authoritative resource on control engineering. He has fully reorganized the text to reflect the technical advances achieved since the last edition and has expanded its contents to include the multidisciplinary perspective that is making control engineering a critical component in so many fields. Now expanded from one to three volumes, The Control Handbook, Second Edition brilliantly organizes cutting-edge contributions from more than 200 leading experts representing every corner of the globe. They cover everything from basic closed-loop systems to multi-agent adaptive systems and from the control of electric motors to the control of complex networks. Progressively organized, the three volume set includes: Control System Fundamentals Control System Applications Control System Advanced Methods Any practicing engineer, student, or researcher working in fields as diverse as electronics, aeronautics, or biomedicine will find this handbook to be a time-saving resource filled with invaluable formulas, models, methods, and innovative thinking. In fact, any physicist, biologist, mathematician, or researcher in any number of fields developing or improving products and systems will find the answers and ideas they need. As with the first edition, the new edition not only stands as a record of accomplishment in control engineering but provides researchers with the means to make further advances.

Modeling, Design, and Simulation of Systems with Uncertainties

Modeling, Design, and Simulation of Systems with Uncertainties
Title Modeling, Design, and Simulation of Systems with Uncertainties PDF eBook
Author Andreas Rauh
Publisher Springer Science & Business Media
Pages 356
Release 2011-06-06
Genre Technology & Engineering
ISBN 3642159567

Download Modeling, Design, and Simulation of Systems with Uncertainties Book in PDF, Epub and Kindle

To describe the true behavior of most real-world systems with sufficient accuracy, engineers have to overcome difficulties arising from their lack of knowledge about certain parts of a process or from the impossibility of characterizing it with absolute certainty. Depending on the application at hand, uncertainties in modeling and measurements can be represented in different ways. For example, bounded uncertainties can be described by intervals, affine forms or general polynomial enclosures such as Taylor models, whereas stochastic uncertainties can be characterized in the form of a distribution described, for example, by the mean value, the standard deviation and higher-order moments. The goal of this Special Volume on Modeling, Design, and Simulation of Systems with Uncertainties is to cover modern methods for dealing with the challenges presented by imprecise or unavailable information. All contributions tackle the topic from the point of view of control, state and parameter estimation, optimization and simulation. Thematically, this volume can be divided into two parts. In the first we present works highlighting the theoretic background and current research on algorithmic approaches in the field of uncertainty handling, together with their reliable software implementation. The second part is concerned with real-life application scenarios from various areas including but not limited to mechatronics, robotics, and biomedical engineering.

Mathematical Modelling, Optimization, Analytic and Numerical Solutions

Mathematical Modelling, Optimization, Analytic and Numerical Solutions
Title Mathematical Modelling, Optimization, Analytic and Numerical Solutions PDF eBook
Author Pammy Manchanda
Publisher Springer Nature
Pages 431
Release 2020-02-04
Genre Mathematics
ISBN 981150928X

Download Mathematical Modelling, Optimization, Analytic and Numerical Solutions Book in PDF, Epub and Kindle

This book discusses a variety of topics related to industrial and applied mathematics, focusing on wavelet theory, sampling theorems, inverse problems and their applications, partial differential equations as a model of real-world problems, computational linguistics, mathematical models and methods for meteorology, earth systems, environmental and medical science, and the oil industry. It features papers presented at the International Conference in Conjunction with 14th Biennial Conference of ISIAM, held at Guru Nanak Dev University, Amritsar, India, on 2–4 February 2018. The conference has emerged as an influential forum, bringing together prominent academic scientists, experts from industry, and researchers. The topics discussed include Schrodinger operators, quantum kinetic equations and their application, extensions of fractional integral transforms, electrical impedance tomography, diffuse optical tomography, Galerkin method by using wavelets, a Cauchy problem associated with Korteweg–de Vries equation, and entropy solution for scalar conservation laws. This book motivates and inspires young researchers in the fields of industrial and applied mathematics.

Generalized Functions, Operator Theory, and Dynamical Systems

Generalized Functions, Operator Theory, and Dynamical Systems
Title Generalized Functions, Operator Theory, and Dynamical Systems PDF eBook
Author Ioannis Antoniou
Publisher CRC Press
Pages 360
Release 2021-02-25
Genre Mathematics
ISBN 1000657744

Download Generalized Functions, Operator Theory, and Dynamical Systems Book in PDF, Epub and Kindle

Nobel prize winner Ilya Prigogine writes in his preface: "Irreversibility is a challenge to mathematics...[which] leads to generalized functions and to an extension of spectral analysis beyond the conventional Hilbert space theory." Meeting this challenge required new mathematical formulations-obstacles met and largely overcome thanks primarily to the contributors to this volume." This compilation of works grew out of material presented at the "Hyperfunctions, Operator Theory and Dynamical Systems" symposium at the International Solvay Institutes for Physics and Chemistry in 1997. The result is a coherently organized collective work that moves from general, widely applicable mathematical methods to ever more specialized physical applications. Presented in two sections, part one describes Generalized Functions and Operator Theory, part two addresses Operator Theory and Dynamical Systems. The interplay between mathematics and physics is now more necessary than ever-and more difficult than ever, given the increasing complexity of theories and methods.