Modeling and Simulation of Turbulent Mixing and Reaction

Modeling and Simulation of Turbulent Mixing and Reaction
Title Modeling and Simulation of Turbulent Mixing and Reaction PDF eBook
Author Daniel Livescu
Publisher Springer Nature
Pages 273
Release 2020-02-19
Genre Technology & Engineering
ISBN 9811526435

Download Modeling and Simulation of Turbulent Mixing and Reaction Book in PDF, Epub and Kindle

This book highlights recent research advances in the area of turbulent flows from both industry and academia for applications in the area of Aerospace and Mechanical engineering. Contributions include modeling, simulations and experiments meant for researchers, professionals and students in the area.

Coarse Grained Simulation and Turbulent Mixing

Coarse Grained Simulation and Turbulent Mixing
Title Coarse Grained Simulation and Turbulent Mixing PDF eBook
Author Fenando F. Grinstein
Publisher Cambridge University Press
Pages 481
Release 2016-06-30
Genre Science
ISBN 1107137047

Download Coarse Grained Simulation and Turbulent Mixing Book in PDF, Epub and Kindle

Reviews our current understanding of the subject. For graduate students and researchers in computational fluid dynamics and turbulence.

Direct Numerical Simulation for Turbulent Reacting Flows

Direct Numerical Simulation for Turbulent Reacting Flows
Title Direct Numerical Simulation for Turbulent Reacting Flows PDF eBook
Author Thierry Baritaud
Publisher Editions TECHNIP
Pages 328
Release 1996
Genre Science
ISBN 9782710806981

Download Direct Numerical Simulation for Turbulent Reacting Flows Book in PDF, Epub and Kindle

Contents: Description of accurate boundary conditions for the simulation of reactive flows. Parallel direct numerical simulation of turbulent reactive flow. Flame-wall interaction and heat flux modelling in turbulent channel flow. A numerical study of laminar flame wall interaction with detailed chemistry: wall temperature effects. Modeling and simulation of turbulent flame kernel evolution. Experimental and theoretical analysis of flame surface density modelling for premixed turbulent combustion. Gradient and counter-gradient transport in turbulent premixed flames. Direct numerical simulation of turbulent flames with complex chemical kinetics. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Numerical simulations of autoignition in turbulent mixing flows. Stabilization processes of diffusion flames. References.

Simulation of Turbulent Flows with and without Combustion with Emphasis on the Impact of Coherent Structures on the Turbulent Mixing

Simulation of Turbulent Flows with and without Combustion with Emphasis on the Impact of Coherent Structures on the Turbulent Mixing
Title Simulation of Turbulent Flows with and without Combustion with Emphasis on the Impact of Coherent Structures on the Turbulent Mixing PDF eBook
Author Cunha Galeazzo, Flavio Cesar
Publisher KIT Scientific Publishing
Pages 258
Release 2016-10-14
Genre Chemical engineering
ISBN 3731504081

Download Simulation of Turbulent Flows with and without Combustion with Emphasis on the Impact of Coherent Structures on the Turbulent Mixing Book in PDF, Epub and Kindle

The analysis of turbulent mixing in complex turbulent flows is a challenging task. The effective mixing of entrained fluids to a molecular level is a vital part of the dynamics of turbulent flows, especially when combustion is involved. The work has shown the limitations of the steady-state simulations and acknowledged the need of applying high-fidelity unsteady methods for the calculation of flows with pronounced unsteadiness promoted by large-scale coherent structures or other sources.

Modeling and Simulation of Turbulent Combustion

Modeling and Simulation of Turbulent Combustion
Title Modeling and Simulation of Turbulent Combustion PDF eBook
Author Santanu De
Publisher Springer
Pages 663
Release 2017-12-12
Genre Science
ISBN 9811074100

Download Modeling and Simulation of Turbulent Combustion Book in PDF, Epub and Kindle

This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Computational Fluid Dynamics for Engineers: Introduction; 2. Modelling; 3. Numerical aspects of CFD; 4. Turbulent flow modelling; 5. Turbulent mixing and chemical reactions; 6. Multiphase flow modelling; 7. Best practice guidelines; 8. References and further reading; Appendix

Computational Fluid Dynamics for Engineers: Introduction; 2. Modelling; 3. Numerical aspects of CFD; 4. Turbulent flow modelling; 5. Turbulent mixing and chemical reactions; 6. Multiphase flow modelling; 7. Best practice guidelines; 8. References and further reading; Appendix
Title Computational Fluid Dynamics for Engineers: Introduction; 2. Modelling; 3. Numerical aspects of CFD; 4. Turbulent flow modelling; 5. Turbulent mixing and chemical reactions; 6. Multiphase flow modelling; 7. Best practice guidelines; 8. References and further reading; Appendix PDF eBook
Author
Publisher
Pages 189
Release 2012
Genre Engineering mathematics
ISBN 9781139203609

Download Computational Fluid Dynamics for Engineers: Introduction; 2. Modelling; 3. Numerical aspects of CFD; 4. Turbulent flow modelling; 5. Turbulent mixing and chemical reactions; 6. Multiphase flow modelling; 7. Best practice guidelines; 8. References and further reading; Appendix Book in PDF, Epub and Kindle

"Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations"--

Turbulent Combustion Modeling

Turbulent Combustion Modeling
Title Turbulent Combustion Modeling PDF eBook
Author Tarek Echekki
Publisher Springer Science & Business Media
Pages 496
Release 2010-12-25
Genre Technology & Engineering
ISBN 9400704127

Download Turbulent Combustion Modeling Book in PDF, Epub and Kindle

Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.