Modeling and Modern Control of Wind Power
Title | Modeling and Modern Control of Wind Power PDF eBook |
Author | Qiuwei Wu |
Publisher | John Wiley & Sons |
Pages | 281 |
Release | 2018-02-05 |
Genre | Science |
ISBN | 1119236266 |
An essential reference to the modeling techniques of wind turbine systems for the application of advanced control methods This book covers the modeling of wind power and application of modern control methods to the wind power control—specifically the models of type 3 and type 4 wind turbines. The modeling aspects will help readers to streamline the wind turbine and wind power plant modeling, and reduce the burden of power system simulations to investigate the impact of wind power on power systems. The use of modern control methods will help technology development, especially from the perspective of manufactures. Chapter coverage includes: status of wind power development, grid code requirements for wind power integration; modeling and control of doubly fed induction generator (DFIG) wind turbine generator (WTG); optimal control strategy for load reduction of full scale converter (FSC) WTG; clustering based WTG model linearization; adaptive control of wind turbines for maximum power point tracking (MPPT); distributed model predictive active power control of wind power plants and energy storage systems; model predictive voltage control of wind power plants; control of wind power plant clusters; and fault ride-through capability enhancement of VSC HVDC connected offshore wind power plants. Modeling and Modern Control of Wind Power also features tables, illustrations, case studies, and an appendix showing a selection of typical test systems and the code of adaptive and distributed model predictive control. Analyzes the developments in control methods for wind turbines (focusing on type 3 and type 4 wind turbines) Provides an overview of the latest changes in grid code requirements for wind power integration Reviews the operation characteristics of the FSC and DFIG WTG Presents production efficiency improvement of WTG under uncertainties and disturbances with adaptive control Deals with model predictive active and reactive power control of wind power plants Describes enhanced control of VSC HVDC connected offshore wind power plants Modeling and Modern Control of Wind Power is ideal for PhD students and researchers studying the field, but is also highly beneficial to engineers and transmission system operators (TSOs), wind turbine manufacturers, and consulting companies.
Wind Energy Generation: Modelling and Control
Title | Wind Energy Generation: Modelling and Control PDF eBook |
Author | Olimpo Anaya-Lara |
Publisher | John Wiley & Sons |
Pages | 222 |
Release | 2011-08-24 |
Genre | Technology & Engineering |
ISBN | 1119964202 |
WIND ENERGY GENERATION WIND ENERGY GENERATION MODELLING AND CONTROL With increasing concern over climate change and the security of energy supplies, wind power is emerging as an important source of electrical energy throughout the world. Modern wind turbines use advanced power electronics to provide efficient generator control and to ensure compatible operation with the power system. Wind Energy Generation describes the fundamental principles and modelling of the electrical generator and power electronic systems used in large wind turbines. It also discusses how they interact with the power system and the influence of wind turbines on power system operation and stability. Key features: Includes a comprehensive account of power electronic equipment used in wind turbines and for their grid connection. Describes enabling technologies which facilitate the connection of large-scale onshore and offshore wind farms. Provides detailed modelling and control of wind turbine systems. Shows a number of simulations and case studies which explain the dynamic interaction between wind power and conventional generation.
Model Predictive Control of Wind Energy Conversion Systems
Title | Model Predictive Control of Wind Energy Conversion Systems PDF eBook |
Author | Venkata Yaramasu |
Publisher | John Wiley & Sons |
Pages | 516 |
Release | 2016-12-19 |
Genre | Science |
ISBN | 1118988582 |
Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.
Modeling and Control Aspects of Wind Power Systems
Title | Modeling and Control Aspects of Wind Power Systems PDF eBook |
Author | S. M. Muyeen |
Publisher | BoD – Books on Demand |
Pages | 216 |
Release | 2013-03-20 |
Genre | Technology & Engineering |
ISBN | 953511042X |
This book covers the recent development and progress of the wind energy conversion system. The chapters are contributed by prominent researchers in the field of wind energy and cover grid integration issues, modern control theories applied in wind energy conversion system, and dynamic and transient stability studies. Modeling and control strategies of different variable speed wind generators such as switched reluctance generator, permanent magnet synchronous generator, doubly-fed induction generator, including the suitable power electronic converter topologies for grid integration, are discussed. Real time control study of wind farm using Real Time Digital Simulator (RTDS) is also included in the book, along with Fault ride through, street light application, integrated power flow solutions, direct power control, wireless coded deadbeat power control, and other interesting topics.
Handbook of Wind Power Systems
Title | Handbook of Wind Power Systems PDF eBook |
Author | Panos M. Pardalos |
Publisher | Springer Science & Business Media |
Pages | 839 |
Release | 2014-01-15 |
Genre | Technology & Engineering |
ISBN | 3642410804 |
Wind power is currently considered as the fastest growing energy resource in the world. Technological advances and government subsidies have contributed in the rapid rise of Wind power systems. The Handbook on Wind Power Systems provides an overview on several aspects of wind power systems and is divided into four sections: optimization problems in wind power generation, grid integration of wind power systems, modeling, control and maintenance of wind facilities and innovative wind energy generation. The chapters are contributed by experts working on different aspects of wind energy generation and conversion.
Power Conversion and Control of Wind Energy Systems
Title | Power Conversion and Control of Wind Energy Systems PDF eBook |
Author | Bin Wu |
Publisher | John Wiley & Sons |
Pages | 480 |
Release | 2011-08-09 |
Genre | Technology & Engineering |
ISBN | 0470593652 |
The book presents the latest power conversion and control technology in modern wind energy systems. It has nine chapters, covering technology overview and market survey, electric generators and modeling, power converters and modulation techniques, wind turbine characteristics and configurations, and control schemes for fixed- and variable-speed wind energy systems. The book also provides in-depth steady-state and dynamic analysis of squirrel cage induction generator, doubly fed induction generator, and synchronous generator based wind energy systems. To illustrate the key concepts and help the reader tackle real-world issues, the book contains more than 30 case studies and 100 solved problems in addition to simulations and experiments. The book serves as a comprehensive reference for academic researchers and practicing engineers. It can also be used as a textbook for graduate students and final year undergraduate students.
Modeling and Control of Sustainable Power Systems
Title | Modeling and Control of Sustainable Power Systems PDF eBook |
Author | Lingfeng Wang |
Publisher | Springer Science & Business Media |
Pages | 369 |
Release | 2011-11-09 |
Genre | Technology & Engineering |
ISBN | 3642229042 |
The concept of the smart grid promises the world an efficient and intelligent approach of managing energy production, transportation, and consumption by incorporating intelligence, efficiency, and optimality into the power grid. Both energy providers and consumers can take advantage of the convenience, reliability, and energy savings achieved by real-time and intelligent energy management. To this end, the current power grid is experiencing drastic changes and upgrades. For instance, more significant green energy resources such as wind power and solar power are being integrated into the power grid, and higher energy storage capacity is being installed in order to mitigate the intermittency issues brought about by the variable energy resources. At the same time, novel power electronics technologies and operating strategies are being invented and adopted. For instance, Flexible AC transmission systems and phasor measurement units are two promising technologies for improving the power system reliability and power quality. Demand side management will enable the customers to manage the power loads in an active fashion. As a result, modeling and control of modern power grids pose great challenges due to the adoption of new smart grid technologies. In this book, chapters regarding representative applications of smart grid technologies written by world-renowned experts are included, which explain in detail various innovative modeling and control methods.