Introduction to Modeling and Analysis of Stochastic Systems
Title | Introduction to Modeling and Analysis of Stochastic Systems PDF eBook |
Author | V. G. Kulkarni |
Publisher | Springer |
Pages | 313 |
Release | 2012-12-27 |
Genre | Mathematics |
ISBN | 9781461427353 |
This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.
Stochastic Modeling
Title | Stochastic Modeling PDF eBook |
Author | Barry L. Nelson |
Publisher | Courier Corporation |
Pages | 338 |
Release | 2012-10-11 |
Genre | Mathematics |
ISBN | 0486139948 |
Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.
Modeling and Analysis of Stochastic Systems
Title | Modeling and Analysis of Stochastic Systems PDF eBook |
Author | Vidyadhar G. Kulkarni |
Publisher | CRC Press |
Pages | 566 |
Release | 2009-12-18 |
Genre | Business & Economics |
ISBN | 1439808775 |
Based on the author's more than 25 years of teaching experience, Modeling and Analysis of Stochastic Systems, Second Edition covers the most important classes of stochastic processes used in the modeling of diverse systems, from supply chains and inventory systems to genetics and biological systems. For each class of stochastic process, the text includes its definition, characterization, applications, transient and limiting behavior, first passage times, and cost/reward models. Along with reorganizing the material, this edition revises and adds new exercises and examples. New to the second edition: a new chapter on diffusion processes that gives an accessible and non-measure-theoretic treatment with applications to finance; a more streamlined, application-oriented approach to renewal, regenerative, and Markov regenerative processes; and, two appendices that collect relevant results from analysis and differential and difference equations. Rather than offer special tricks that work in specific problems, this book provides thorough coverage of general tools that enable the solution and analysis of stochastic models. After mastering the material in the text, students will be well-equipped to build and analyze useful stochastic models for various situations. A collection of MATLAB[registered]-based programs can be downloaded from the author's website and a solutions manual is available for qualifying instructors.
An Introduction to Stochastic Modeling
Title | An Introduction to Stochastic Modeling PDF eBook |
Author | Howard M. Taylor |
Publisher | Academic Press |
Pages | 410 |
Release | 2014-05-10 |
Genre | Mathematics |
ISBN | 1483269272 |
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Markov Processes for Stochastic Modeling
Title | Markov Processes for Stochastic Modeling PDF eBook |
Author | Oliver Ibe |
Publisher | Newnes |
Pages | 515 |
Release | 2013-05-22 |
Genre | Mathematics |
ISBN | 0124078397 |
Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.
Discrete-time Stochastic Systems
Title | Discrete-time Stochastic Systems PDF eBook |
Author | Torsten Söderström |
Publisher | Springer Science & Business Media |
Pages | 410 |
Release | 2002-07-26 |
Genre | Mathematics |
ISBN | 9781852336493 |
This comprehensive introduction to the estimation and control of dynamic stochastic systems provides complete derivations of key results. The second edition includes improved and updated material, and a new presentation of polynomial control and new derivation of linear-quadratic-Gaussian control.
Modeling, Analysis, Design, and Control of Stochastic Systems
Title | Modeling, Analysis, Design, and Control of Stochastic Systems PDF eBook |
Author | V. G. Kulkarni |
Publisher | Springer |
Pages | 381 |
Release | 2014-01-13 |
Genre | Technology & Engineering |
ISBN | 1475730985 |
An introductory level text on stochastic modelling, suited for undergraduates or graduates in actuarial science, business management, computer science, engineering, operations research, public policy, statistics, and mathematics. It employs a large number of examples to show how to build stochastic models of physical systems, analyse these models to predict their performance, and use the analysis to design and control them. The book provides a self-contained review of the relevant topics in probability theory: In discrete and continuous time Markov models it covers the transient and long term behaviour, cost models, and first passage times; under generalised Markov models, it covers renewal processes, cumulative processes and semi-Markov processes. All the material is illustrated with many examples, and the book emphasises numerical answers to the problems. A software package called MAXIM, which runs on MATLAB, is available for downloading.