Model Optimization Methods for Efficient and Edge AI

Model Optimization Methods for Efficient and Edge AI
Title Model Optimization Methods for Efficient and Edge AI PDF eBook
Author Pethuru Raj Chelliah
Publisher John Wiley & Sons
Pages 436
Release 2025-01-09
Genre Computers
ISBN 1394219210

Download Model Optimization Methods for Efficient and Edge AI Book in PDF, Epub and Kindle

Comprehensive overview of the fledgling domain of federated learning (FL), explaining emerging FL methods, architectural approaches, enabling frameworks, and applications Model Optimization Methods for Efficient and Edge AI explores AI model engineering, evaluation, refinement, optimization, and deployment across multiple cloud environments (public, private, edge, and hybrid). It presents key applications of the AI paradigm, including computer vision (CV) and Natural Language Processing (NLP), explaining the nitty-gritty of federated learning (FL) and how the FL method is helping to fulfill AI model optimization needs. The book also describes tools that vendors have created, including FL frameworks and platforms such as PySyft, Tensor Flow Federated (TFF), FATE (Federated AI Technology Enabler), Tensor/IO, and more. The first part of the text covers popular AI and ML methods, platforms, and applications, describing leading AI frameworks and libraries in order to clearly articulate how these tools can help with visualizing and implementing highly flexible AI models quickly. The second part focuses on federated learning, discussing its basic concepts, applications, platforms, and its potential in edge systems (such as IoT). Other topics covered include: Building AI models that are destined to solve several problems, with a focus on widely articulated classification, regression, association, clustering, and other prediction problems Generating actionable insights through a variety of AI algorithms, platforms, parallel processing, and other enablers Compressing AI models so that computational, memory, storage, and network requirements can be substantially reduced Addressing crucial issues such as data confidentiality, data access rights, data protection, and access to heterogeneous data Overcoming cyberattacks on mission-critical software systems by leveraging federated learning

Mobile Edge Artificial Intelligence

Mobile Edge Artificial Intelligence
Title Mobile Edge Artificial Intelligence PDF eBook
Author Yuanming Shi
Publisher Elsevier
Pages 206
Release 2021-08-17
Genre Computers
ISBN 0128238178

Download Mobile Edge Artificial Intelligence Book in PDF, Epub and Kindle

Mobile Edge Artificial Intelligence: Opportunities and Challenges presents recent advances in wireless technologies and nonconvex optimization techniques for designing efficient edge AI systems. The book includes comprehensive coverage on modeling, algorithm design and theoretical analysis. Through typical examples, the powerfulness of this set of systems and algorithms is demonstrated, along with their abilities to make low-latency, reliable and private intelligent decisions at network edge. With the availability of massive datasets, high performance computing platforms, sophisticated algorithms and software toolkits, AI has achieved remarkable success in many application domains. As such, intelligent wireless networks will be designed to leverage advanced wireless communications and mobile computing technologies to support AI-enabled applications at various edge mobile devices with limited communication, computation, hardware and energy resources. Presents advanced key enabling techniques, including model compression, wireless MapReduce and wireless cooperative transmission Provides advanced 6G wireless techniques, including over-the-air computation and reconfigurable intelligent surface Includes principles for designing communication-efficient edge inference systems, communication-efficient training systems, and communication-efficient optimization algorithms for edge machine learning

Edge AI

Edge AI
Title Edge AI PDF eBook
Author Xiaofei Wang
Publisher Springer Nature
Pages 156
Release 2020-08-31
Genre Computers
ISBN 9811561869

Download Edge AI Book in PDF, Epub and Kindle

As an important enabler for changing people’s lives, advances in artificial intelligence (AI)-based applications and services are on the rise, despite being hindered by efficiency and latency issues. By focusing on deep learning as the most representative technique of AI, this book provides a comprehensive overview of how AI services are being applied to the network edge near the data sources, and demonstrates how AI and edge computing can be mutually beneficial. To do so, it introduces and discusses: 1) edge intelligence and intelligent edge; and 2) their implementation methods and enabling technologies, namely AI training and inference in the customized edge computing framework. Gathering essential information previously scattered across the communication, networking, and AI areas, the book can help readers to understand the connections between key enabling technologies, e.g. a) AI applications in edge; b) AI inference in edge; c) AI training for edge; d) edge computing for AI; and e) using AI to optimize edge. After identifying these five aspects, which are essential for the fusion of edge computing and AI, it discusses current challenges and outlines future trends in achieving more pervasive and fine-grained intelligence with the aid of edge computing.

Deep Learning Model Optimization, Deployment and Improvement Techniques for Edge-native Applications

Deep Learning Model Optimization, Deployment and Improvement Techniques for Edge-native Applications
Title Deep Learning Model Optimization, Deployment and Improvement Techniques for Edge-native Applications PDF eBook
Author Pethuru Raj
Publisher Cambridge Scholars Publishing
Pages 427
Release 2024-08-22
Genre Computers
ISBN 1036409619

Download Deep Learning Model Optimization, Deployment and Improvement Techniques for Edge-native Applications Book in PDF, Epub and Kindle

The edge AI implementation technologies are fast maturing and stabilizing. Edge AI digitally transforms retail, manufacturing, healthcare, financial services, transportation, telecommunication, and energy. The transformative potential of Edge AI, a pivotal force in driving the evolution from Industry 4.0’s smart manufacturing and automation to Industry 5.0’s human-centric, sustainable innovation. The exploration of the cutting-edge technologies, tools, and applications that enable real-time data processing and intelligent decision-making at the network’s edge, addressing the increasing demand for efficiency, resilience, and personalization in industrial systems. Our book aims to provide readers with a comprehensive understanding of how Edge AI integrates with existing infrastructures, enhances operational capabilities, and fosters a symbiotic relationship between human expertise and machine intelligence. Through detailed case studies, technical insights, and practical guidelines, this book serves as an essential resource for professionals, researchers, and enthusiasts poised to harness the full potential of Edge AI in the rapidly advancing industrial landscape.

IoT Edge Intelligence

IoT Edge Intelligence
Title IoT Edge Intelligence PDF eBook
Author Souvik Pal
Publisher Springer Nature
Pages 392
Release
Genre
ISBN 3031583884

Download IoT Edge Intelligence Book in PDF, Epub and Kindle

Mobile Edge Artificial Intelligence

Mobile Edge Artificial Intelligence
Title Mobile Edge Artificial Intelligence PDF eBook
Author Yuanming Shi
Publisher Academic Press
Pages 208
Release 2021-08-07
Genre Computers
ISBN 0128238356

Download Mobile Edge Artificial Intelligence Book in PDF, Epub and Kindle

Mobile Edge Artificial Intelligence: Opportunities and Challenges presents recent advances in wireless technologies and nonconvex optimization techniques for designing efficient edge AI systems. The book includes comprehensive coverage on modeling, algorithm design and theoretical analysis. Through typical examples, the powerfulness of this set of systems and algorithms is demonstrated, along with their abilities to make low-latency, reliable and private intelligent decisions at network edge. With the availability of massive datasets, high performance computing platforms, sophisticated algorithms and software toolkits, AI has achieved remarkable success in many application domains. As such, intelligent wireless networks will be designed to leverage advanced wireless communications and mobile computing technologies to support AI-enabled applications at various edge mobile devices with limited communication, computation, hardware and energy resources. - Presents advanced key enabling techniques, including model compression, wireless MapReduce and wireless cooperative transmission - Provides advanced 6G wireless techniques, including over-the-air computation and reconfigurable intelligent surface - Includes principles for designing communication-efficient edge inference systems, communication-efficient training systems, and communication-efficient optimization algorithms for edge machine learning

Quantum Machine Learning

Quantum Machine Learning
Title Quantum Machine Learning PDF eBook
Author Pethuru Raj
Publisher Walter de Gruyter GmbH & Co KG
Pages 336
Release 2024-08-05
Genre Computers
ISBN 3111342271

Download Quantum Machine Learning Book in PDF, Epub and Kindle

Quantum computing has shown a potential to tackle specific types of problems, especially those involving a daunting number of variables, at an exponentially faster rate compared to classical computers. This volume focuses on quantum variants of machine learning algorithms, such as quantum neural networks, quantum reinforcement learning, quantum principal component analysis, quantum support vectors, quantum Boltzmann machines, and many more.