Mixture Modelling for Medical and Health Sciences
Title | Mixture Modelling for Medical and Health Sciences PDF eBook |
Author | Shu-Kay Ng |
Publisher | CRC Press |
Pages | 314 |
Release | 2019-05-03 |
Genre | Mathematics |
ISBN | 0429529090 |
Mixture Modelling for Medical and Health Sciences provides a direct connection between theoretical developments in mixture modelling and their applications in real world problems. The book describes the development of the most important concepts through comprehensive analyses of real and practical examples taken from real-life research problems in
Mixture Modelling for Medical and Health Sciences
Title | Mixture Modelling for Medical and Health Sciences PDF eBook |
Author | Shu-Kay Ng |
Publisher | CRC Press |
Pages | 300 |
Release | 2019-05-03 |
Genre | Mathematics |
ISBN | 148223677X |
Mixture Modelling for Medical and Health Sciences provides a direct connection between theoretical developments in mixture modelling and their applications in real world problems. The book describes the development of the most important concepts through comprehensive analyses of real and practical examples taken from real-life research problems in
Medical Applications of Finite Mixture Models
Title | Medical Applications of Finite Mixture Models PDF eBook |
Author | Peter Schlattmann |
Publisher | Springer Science & Business Media |
Pages | 252 |
Release | 2009-03-02 |
Genre | Medical |
ISBN | 3540686517 |
Patients are not alike! This simple truth is often ignored in the analysis of me- cal data, since most of the time results are presented for the “average” patient. As a result, potential variability between patients is ignored when presenting, e.g., the results of a multiple linear regression model. In medicine there are more and more attempts to individualize therapy; thus, from the author’s point of view biostatis- cians should support these efforts. Therefore, one of the tasks of the statistician is to identify heterogeneity of patients and, if possible, to explain part of it with known explanatory covariates. Finite mixture models may be used to aid this purpose. This book tries to show that there are a large range of applications. They include the analysis of gene - pression data, pharmacokinetics, toxicology, and the determinants of beta-carotene plasma levels. Other examples include disease clustering, data from psychophysi- ogy, and meta-analysis of published studies. The book is intended as a resource for those interested in applying these methods.
Nonlinear Mixture Models: A Bayesian Approach
Title | Nonlinear Mixture Models: A Bayesian Approach PDF eBook |
Author | Tatiana V Tatarinova |
Publisher | World Scientific |
Pages | 296 |
Release | 2014-12-30 |
Genre | Mathematics |
ISBN | 1783266279 |
This book, written by two mathematicians from the University of Southern California, provides a broad introduction to the important subject of nonlinear mixture models from a Bayesian perspective. It contains background material, a brief description of Markov chain theory, as well as novel algorithms and their applications. It is self-contained and unified in presentation, which makes it ideal for use as an advanced textbook by graduate students and as a reference for independent researchers. The explanations in the book are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to go further into the subject and explore the research literature.In this book the authors present Bayesian methods of analysis for nonlinear, hierarchical mixture models, with a finite, but possibly unknown, number of components. These methods are then applied to various problems including population pharmacokinetics and gene expression analysis. In population pharmacokinetics, the nonlinear mixture model, based on previous clinical data, becomes the prior distribution for individual therapy. For gene expression data, one application included in the book is to determine which genes should be associated with the same component of the mixture (also known as a clustering problem). The book also contains examples of computer programs written in BUGS. This is the first book of its kind to cover many of the topics in this field.
Mixture Models and Applications
Title | Mixture Models and Applications PDF eBook |
Author | Nizar Bouguila |
Publisher | Springer |
Pages | 356 |
Release | 2019-08-13 |
Genre | Technology & Engineering |
ISBN | 3030238768 |
This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on mixture models, or a survey of the literature. Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection; Present theoretical and practical developments in mixture-based modeling and their importance in different applications; Discusses perspectives and challenging future works related to mixture modeling.
Measuring income equity in the demand for healthcare with finite mixture models
Title | Measuring income equity in the demand for healthcare with finite mixture models PDF eBook |
Author | Галина Бесстремянная |
Publisher | Litres |
Pages | 25 |
Release | 2022-01-29 |
Genre | Medical |
ISBN | 5040709005 |
The paper exploits panel data finite mixture (latent class) models to measure consumer equity in healthcare access and utilization. The finite mixture approach accounts for unobservable consumer heterogeneity, while generalized linear models address a retransformation problem of logged dependent variable. Using the data of the Japan Household Panel Survey (2009–2014), we discover that consumers separate into latent classes in the binary choice models for healthcare use and generalized linear models for outpatient/inpatient healthcare expenditure. The results reveal that healthcare access in Japan is pro-poor for the most sick consumers, while utilization of outpatient care is equitable with respect to disposable income.
Applied Longitudinal Data Analysis for Medical Science
Title | Applied Longitudinal Data Analysis for Medical Science PDF eBook |
Author | Jos W. R. Twisk |
Publisher | Cambridge University Press |
Pages | 271 |
Release | 2023-05-31 |
Genre | Medical |
ISBN | 1009288040 |
Discusses methods available for longitudinal data analysis in non-technical language, allowing readers to apply techniques easily to their work. Aimed at non-statisticians and researchers working in medical science and utilising longitudinal studies, the interpretation of the results of various methods of analysis is emphasised.