Mixed Effects Models and Extensions in Ecology with R
Title | Mixed Effects Models and Extensions in Ecology with R PDF eBook |
Author | Alain Zuur |
Publisher | Springer Science & Business Media |
Pages | 579 |
Release | 2009-03-05 |
Genre | Science |
ISBN | 0387874585 |
This book discusses advanced statistical methods that can be used to analyse ecological data. Most environmental collected data are measured repeatedly over time, or space and this requires the use of GLMM or GAMM methods. The book starts by revising regression, additive modelling, GAM and GLM, and then discusses dealing with spatial or temporal dependencies and nested data.
Mixed Effects Models and Extensions in Ecology with R.
Title | Mixed Effects Models and Extensions in Ecology with R. PDF eBook |
Author | Alain F. Zuur |
Publisher | |
Pages | 600 |
Release | 2011 |
Genre | Ecology |
ISBN | 9780387875163 |
Mixed Effects Models and Extensions in Ecology with R
Title | Mixed Effects Models and Extensions in Ecology with R PDF eBook |
Author | Alain Zuur |
Publisher | Springer |
Pages | 574 |
Release | 2011-04-06 |
Genre | Science |
ISBN | 9781441927644 |
This book discusses advanced statistical methods that can be used to analyse ecological data. Most environmental collected data are measured repeatedly over time, or space and this requires the use of GLMM or GAMM methods. The book starts by revising regression, additive modelling, GAM and GLM, and then discusses dealing with spatial or temporal dependencies and nested data.
Linear Mixed-Effects Models Using R
Title | Linear Mixed-Effects Models Using R PDF eBook |
Author | Andrzej Gałecki |
Publisher | Springer Science & Business Media |
Pages | 558 |
Release | 2013-02-05 |
Genre | Mathematics |
ISBN | 1461439000 |
Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.
Mixed Effects Models for Complex Data
Title | Mixed Effects Models for Complex Data PDF eBook |
Author | Lang Wu |
Publisher | CRC Press |
Pages | 431 |
Release | 2009-11-11 |
Genre | Mathematics |
ISBN | 9781420074086 |
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Ecological Models and Data in R
Title | Ecological Models and Data in R PDF eBook |
Author | Benjamin M. Bolker |
Publisher | Princeton University Press |
Pages | 408 |
Release | 2008-07-21 |
Genre | Computers |
ISBN | 0691125228 |
Introduction and background; Exploratory data analysis and graphics; Deterministic functions for ecological modeling; Probability and stochastic distributions for ecological modeling; Stochatsic simulation and power analysis; Likelihood and all that; Optimization and all that; Likelihood examples; Standar statistics revisited; Modeling variance; Dynamic models.
Analyzing Ecological Data
Title | Analyzing Ecological Data PDF eBook |
Author | Alain Zuur |
Publisher | Springer |
Pages | 686 |
Release | 2007-08-29 |
Genre | Science |
ISBN | 0387459723 |
This book provides a practical introduction to analyzing ecological data using real data sets. The first part gives a largely non-mathematical introduction to data exploration, univariate methods (including GAM and mixed modeling techniques), multivariate analysis, time series analysis, and spatial statistics. The second part provides 17 case studies. The case studies include topics ranging from terrestrial ecology to marine biology and can be used as a template for a reader’s own data analysis. Data from all case studies are available from www.highstat.com. Guidance on software is provided in the book.