Control and Dynamic Systems V31: Advances in Aerospace Systems Dynamics and Control Systems Part 1 of 3
Title | Control and Dynamic Systems V31: Advances in Aerospace Systems Dynamics and Control Systems Part 1 of 3 PDF eBook |
Author | C.T. Leonides |
Publisher | Elsevier |
Pages | 279 |
Release | 2012-12-02 |
Genre | Technology & Engineering |
ISBN | 0323162398 |
Control and Dynamic Systems: Advances in Theory in Applications, Volume 31: Advances in Aerospace Systems Dynamics and Control Systems, Part 1 of 3 deals with significant advances in technologies which support the development of aerospace systems. It also presents several algorithms and computational techniques used in complex aerospace systems. The techniques discussed in this volume include: moving-bank multiple model adaptive estimation, algorithms for multitarget sensor tracking systems; algorithms in differential dynamic programming; optimal control of linear stochastic systems; and normalized predictive deconvulation. This book is an important reference for practitioners in the field who want a comprehensive source of techniques with significant applied implications.
State Estimation for Dynamic Systems
Title | State Estimation for Dynamic Systems PDF eBook |
Author | Felix L. Chernousko |
Publisher | CRC Press |
Pages | 322 |
Release | 1993-11-09 |
Genre | Technology & Engineering |
ISBN | 9780849344589 |
State Estimation for Dynamic Systems presents the state of the art in this field and discusses a new method of state estimation. The method makes it possible to obtain optimal two-sided ellipsoidal bounds for reachable sets of linear and nonlinear control systems with discrete and continuous time. The practical stability of dynamic systems subjected to disturbances can be analyzed, and two-sided estimates in optimal control and differential games can be obtained. The method described in the book also permits guaranteed state estimation (filtering) for dynamic systems in the presence of external disturbances and observation errors. Numerical algorithms for state estimation and optimal control, as well as a number of applications and examples, are presented. The book will be an excellent reference for researchers and engineers working in applied mathematics, control theory, and system analysis. It will also appeal to pure and applied mathematicians, control engineers, and computer programmers.
Proceedings of the 1977 IEEE Conference on Decision & Control, Including the 16th Symposium on Adaptive Processes and a Special Symposium on Fuzzy Set Theory and Applications, December 7-9, 1977, Fairmont Hotel, New Orleans, Louisiana
Title | Proceedings of the 1977 IEEE Conference on Decision & Control, Including the 16th Symposium on Adaptive Processes and a Special Symposium on Fuzzy Set Theory and Applications, December 7-9, 1977, Fairmont Hotel, New Orleans, Louisiana PDF eBook |
Author | |
Publisher | |
Pages | 1568 |
Release | 1977 |
Genre | Adaptive control systems |
ISBN |
Estimators for Uncertain Dynamic Systems
Title | Estimators for Uncertain Dynamic Systems PDF eBook |
Author | A.I. Matasov |
Publisher | Springer Science & Business Media |
Pages | 428 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 9401153221 |
When solving the control and design problems in aerospace and naval engi neering, energetics, economics, biology, etc., we need to know the state of investigated dynamic processes. The presence of inherent uncertainties in the description of these processes and of noises in measurement devices leads to the necessity to construct the estimators for corresponding dynamic systems. The estimators recover the required information about system state from mea surement data. An attempt to solve the estimation problems in an optimal way results in the formulation of different variational problems. The type and complexity of these variational problems depend on the process model, the model of uncertainties, and the estimation performance criterion. A solution of variational problem determines an optimal estimator. Howerever, there exist at least two reasons why we use nonoptimal esti mators. The first reason is that the numerical algorithms for solving the corresponding variational problems can be very difficult for numerical imple mentation. For example, the dimension of these algorithms can be very high.
Optimal State Estimation
Title | Optimal State Estimation PDF eBook |
Author | Dan Simon |
Publisher | John Wiley & Sons |
Pages | 554 |
Release | 2006-06-19 |
Genre | Technology & Engineering |
ISBN | 0470045337 |
A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.
Multisensor Fusion Estimation Theory and Application
Title | Multisensor Fusion Estimation Theory and Application PDF eBook |
Author | Liping Yan |
Publisher | Springer Nature |
Pages | 229 |
Release | 2020-11-11 |
Genre | Technology & Engineering |
ISBN | 9811594260 |
This book focuses on the basic theory and methods of multisensor data fusion state estimation and its application. It consists of four parts with 12 chapters. In Part I, the basic framework and methods of multisensor optimal estimation and the basic concepts of Kalman filtering are briefly and systematically introduced. In Part II, the data fusion state estimation algorithms under networked environment are introduced. Part III consists of three chapters, in which the fusion estimation algorithms under event-triggered mechanisms are introduced. Part IV consists of two chapters, in which fusion estimation for systems with non-Gaussian but heavy-tailed noises are introduced. The book is primarily intended for researchers and engineers in the field of data fusion and state estimation. It also benefits for both graduate and undergraduate students who are interested in target tracking, navigation, networked control, etc.
State Estimation and Fault Diagnosis under Imperfect Measurements
Title | State Estimation and Fault Diagnosis under Imperfect Measurements PDF eBook |
Author | Yang Liu |
Publisher | CRC Press |
Pages | 223 |
Release | 2022-08-31 |
Genre | Technology & Engineering |
ISBN | 1000641066 |
The objective of this book is to present the up-to-date research developments and novel methodologies on state estimation and fault diagnosis (FD) techniques for a class of complex systems subject to closed-loop control, nonlinearities, and stochastic phenomena. It covers state estimation design methodologies and FD unit design methodologies including framework of optimal filter and FD unit design, robust filter and FD unit design, stability, and performance analysis for the considered systems subject to various kinds of complex factors. Features: Reviews latest research results on the state estimation and fault diagnosis issues. Presents comprehensive framework constituted for systems under imperfect measurements. Includes quantitative performance analyses to solve problems in practical situations. Provides simulation examples extracted from practical engineering scenarios. Discusses proper and novel techniques such as the Carleman approximation and completing the square method is employed to solve the mathematical problems. This book aims at Graduate students, Professionals and Researchers in Control Science and Application, Stochastic Process, Fault Diagnosis, and Instrumentation and Measurement.