Microstructural Design of Advanced Engineering Materials

Microstructural Design of Advanced Engineering Materials
Title Microstructural Design of Advanced Engineering Materials PDF eBook
Author Dmitri A. Molodov
Publisher John Wiley & Sons
Pages 524
Release 2013-07-17
Genre Technology & Engineering
ISBN 3527652833

Download Microstructural Design of Advanced Engineering Materials Book in PDF, Epub and Kindle

The choice of a material for a certain application is made taking into account its properties. If, for example one would like to produce a table, a hard material is needed to guarantee the stability of the product, but the material should not be too hard so that manufacturing is still as easy as possible - in this simple example wood might be the material of choice. When coming to more advanced applications the required properties are becoming more complex and the manufacturer`s desire is to tailor the properties of the material to fit the needs. To let this dream come true, insights into the microstructure of materials is crucial to finally control the properties of the materials because the microstructure determines its properties. Written by leading scientists in the field of microstructural design of engineering materials, this book focuses on the evolution and behavior of granular microstructures of various advanced materials during plastic deformation and treatment at elevated temperatures. These topics provide essential background and practical information for materials scientists, metallurgists and solid state physicists.

Engineering Materials 2

Engineering Materials 2
Title Engineering Materials 2 PDF eBook
Author Michael F. Ashby
Publisher Elsevier
Pages 380
Release 2014-06-28
Genre Technology & Engineering
ISBN 1483297217

Download Engineering Materials 2 Book in PDF, Epub and Kindle

Provides a thorough explanation of the basic properties of materials; of how these can be controlled by processing; of how materials are formed, joined and finished; and of the chain of reasoning that leads to a successful choice of material for a particular application. The materials covered are grouped into four classes: metals, ceramics, polymers and composites. Each class is studied in turn, identifying the families of materials in the class, the microstructural features, the processes or treatments used to obtain a particular structure and their design applications. The text is supplemented by practical case studies and example problems with answers, and a valuable programmed learning course on phase diagrams.

Metallurgy and Design of Alloys with Hierarchical Microstructures

Metallurgy and Design of Alloys with Hierarchical Microstructures
Title Metallurgy and Design of Alloys with Hierarchical Microstructures PDF eBook
Author Krishnan K. Sankaran
Publisher Elsevier
Pages 508
Release 2017-06-14
Genre Technology & Engineering
ISBN 0128120258

Download Metallurgy and Design of Alloys with Hierarchical Microstructures Book in PDF, Epub and Kindle

Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse microstructures, the underlying principles can easily be extended to other materials systems. With the increasing microstructural complexity of structural materials, it is important for students, academic researchers and practicing engineers to possess the knowledge of how materials are optimized and how they will behave in service. The book integrates aspects of computational materials science, physical metallurgy, alloy design, process design, and structure-properties relationships, in a manner not done before. It fills a knowledge gap in the interrelationships of multiple microstructural and deformation mechanisms by applying the concepts and tools of designing microstructures for achieving combinations of engineering properties—such as strength, corrosion resistance, durability and damage tolerance in multi-component materials—used for critical structural applications. - Discusses the science behind the properties and performance of advanced metallic materials - Provides for the efficient design of materials and processes to satisfy targeted performance in materials and structures - Enables the selection and development of new alloys for specific applications based upon evaluation of their microstructure as illustrated in this work

Microstructure of Steels and Cast Irons

Microstructure of Steels and Cast Irons
Title Microstructure of Steels and Cast Irons PDF eBook
Author Madeleine Durand-Charre
Publisher Springer Science & Business Media
Pages 407
Release 2013-03-09
Genre Technology & Engineering
ISBN 3662087294

Download Microstructure of Steels and Cast Irons Book in PDF, Epub and Kindle

The book comprises three parts. Part 1 gives a historical description of the development of ironworking techniques since the earliest times. Part 2 is the core of the book and deals with the metallurgical basis of microstructures, with four main themes: phase diagrams, solidification processes, diffusion, and solid state phase transformations. Part 3 begins by an introduction to steel design principles. It then goes on to consider the different categories of steels, placing emphasis on their specific microstructural features. Finally, a comprehensive reference list includes several hundred pertinent articles and books. The book is the work of a single author, thus ensuring uniformity and concision. It is intended for scientists, metallurgical engineers and senior technicians in research and development laboratories, design offices and quality departments, as well as for teachers and students in universities, technical colleges and other higher education establishments.

Materials Discovery and Design

Materials Discovery and Design
Title Materials Discovery and Design PDF eBook
Author Turab Lookman
Publisher Springer
Pages 266
Release 2018-09-22
Genre Science
ISBN 3319994654

Download Materials Discovery and Design Book in PDF, Epub and Kindle

This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.

Microstructure And Properties Of Materials, Vol 2

Microstructure And Properties Of Materials, Vol 2
Title Microstructure And Properties Of Materials, Vol 2 PDF eBook
Author James C M Li
Publisher World Scientific Publishing Company
Pages 454
Release 2000-10-09
Genre Technology & Engineering
ISBN 9813105658

Download Microstructure And Properties Of Materials, Vol 2 Book in PDF, Epub and Kindle

This is the second volume of an advanced textbook on microstructure and properties of materials. (The first volume is on aluminum alloys, nickel-based superalloys, metal matrix composites, polymer matrix composites, ceramics matrix composites, inorganic glasses, superconducting materials and magnetic materials). It covers titanium alloys, titanium aluminides, iron aluminides, iron and steels, iron-based bulk amorphous alloys and nanocrystalline materials.There are many elementary materials science textbooks, but one can find very few advanced texts suitable for graduate school courses. The contributors to this volume are experts in the subject, and hence, together with the first volume, it is a good text for graduate microstructure courses. It is a rich source of design ideas and applications, and will provide a good understanding of how microstructure affects the properties of materials.Chapter 1, on titanium alloys, covers production, thermomechanical processing, microstructure, mechanical properties and applications. Chapter 2, on titanium aluminides, discusses phase stability, bulk and defect properties, deformation mechanisms of single phase materials and polysynthetically twinned crystals, and interfacial structures and energies between phases of different compositions. Chapter 3, on iron aluminides, reviews the physical and mechanical metallurgy of Fe3Al and FeAl, the two important structural intermetallics. Chapter 4, on iron and steels, presents methodology, microstructure at various levels, strength, ductility and strengthening, toughness and toughening, environmental cracking and design against fracture for many different kinds of steels. Chapter 5, on bulk amorphous alloys, covers the critical cooling rate and the effect of composition on glass formation and the accompanying mechanical and magnetic properties of the glasses. Chapter 6, on nanocrystalline materials, describes the preparation from vapor, liquid and solid states, microstructure including grain boundaries and their junctions, stability with respect to grain growth, particulate consolidation while maintaining the nanoscale microstructure, physical, chemical, mechanical, electric, magnetic and optical properties and applications in cutting tools, superplasticity, coatings, transformers, magnetic recordings, catalysis and hydrogen storage.

Nano and Microstructural Design of Advanced Materials

Nano and Microstructural Design of Advanced Materials
Title Nano and Microstructural Design of Advanced Materials PDF eBook
Author M. A. Meyers
Publisher Elsevier
Pages 317
Release 2003-12-05
Genre Technology & Engineering
ISBN 0080537235

Download Nano and Microstructural Design of Advanced Materials Book in PDF, Epub and Kindle

The importance of the nanoscale effects has been recognized in materials research for over fifty years, but it is only recently that advanced characterization and fabrication methods are enabling scientists to build structures atom-by-atom or molecule-by molecule. The understanding and control of the nanostructure has been, to a large extent, made possible by new atomistic analysis and characterization methods pioneered by transmission electron microscopy. Nano and Microstructural Design of Advanced Materials focuses on the effective use of such advanced analysis and characterization techniques in the design of materials. - Teaches effective use of advanced analysis and characterization methods at an atomistic level - Contains many supporting examples of materials in which such design concepts have been successfully applied