Microfluidic Devices for Single Cell Manipulation and Analysis

Microfluidic Devices for Single Cell Manipulation and Analysis
Title Microfluidic Devices for Single Cell Manipulation and Analysis PDF eBook
Author Erik Scott Douglas
Publisher
Pages 248
Release 2008
Genre
ISBN 9781109101805

Download Microfluidic Devices for Single Cell Manipulation and Analysis Book in PDF, Epub and Kindle

The techniques developed in my thesis have laid the foundation for the "bionic interface", a nanoscale electrochemical platform for electrical sensing and communication with cells, cellular arrays and tissues that will enhance our understanding of cellular system function.

Microfluidics for Single-Cell Analysis

Microfluidics for Single-Cell Analysis
Title Microfluidics for Single-Cell Analysis PDF eBook
Author Jin-Ming Lin
Publisher Springer Nature
Pages 261
Release 2019-08-28
Genre Science
ISBN 9813297298

Download Microfluidics for Single-Cell Analysis Book in PDF, Epub and Kindle

This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor’s laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods.

Microfluidics and Multiferroics Technologies for Single-Cell Manipulation and Analysis

Microfluidics and Multiferroics Technologies for Single-Cell Manipulation and Analysis
Title Microfluidics and Multiferroics Technologies for Single-Cell Manipulation and Analysis PDF eBook
Author Reem Ibrahim Khojah
Publisher
Pages 141
Release 2019
Genre
ISBN

Download Microfluidics and Multiferroics Technologies for Single-Cell Manipulation and Analysis Book in PDF, Epub and Kindle

Sorting engineered cells with unique properties or functions from a larger population represents the future for personalized cell therapy and diagnostics. High- throughput and high-content single-cell sorting methods enable selecting specific desirable cell subpopulations from a heterogeneous mixture and facilitate extracting wealthy information of medically relevant biomarkers. This thesis explores programmable microfluidic and multiferroic methods for cell sorting and analysis. Microcavity flow was used to passively separate cancer cells from blood in high-throughput. Cavity flow physics was explored for size-based capture of cells. To expand cell sorting automation and artificial intelligence integration in microfluidic devices, suspended micromotor system was developed and controlled with computer-assisted image analysis software to enable modular sorting of cells, cells encapsulated in droplets, cell clusters, and organoids of any size. Next section, programmable magnetoelastic microstructures were coupled with microfluidic devices for single-cell manipulation. Magnetoelastic materials with controllable intrinsic magnetic properties were used for single-cell capture/release in highly parallel arrays. Microfluidic and multiferroic cell sorting technologies will potentially enhance single-cell profiling across diverse cancer cells for personalized medicine and support cell engineering technologies through a precise selection of high-performing cells.

Micro/Nanofluidic Devices for Single Cell Analysis

Micro/Nanofluidic Devices for Single Cell Analysis
Title Micro/Nanofluidic Devices for Single Cell Analysis PDF eBook
Author Fan-Gang Tseng
Publisher MDPI
Pages 167
Release 2018-10-04
Genre Computers
ISBN 3038421464

Download Micro/Nanofluidic Devices for Single Cell Analysis Book in PDF, Epub and Kindle

This book is a printed edition of the Special Issue "Micro/Nanofluidic Devices for Single Cell Analysis" that was published in Micromachines

Microtechnology for Cell Manipulation and Sorting

Microtechnology for Cell Manipulation and Sorting
Title Microtechnology for Cell Manipulation and Sorting PDF eBook
Author Wonhee Lee
Publisher Springer
Pages 287
Release 2016-10-05
Genre Technology & Engineering
ISBN 3319441396

Download Microtechnology for Cell Manipulation and Sorting Book in PDF, Epub and Kindle

This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientists working in the biotechnology industry.

Cell Analysis on Microfluidics

Cell Analysis on Microfluidics
Title Cell Analysis on Microfluidics PDF eBook
Author Jin-Ming Lin
Publisher Springer
Pages 435
Release 2017-10-25
Genre Science
ISBN 9811053944

Download Cell Analysis on Microfluidics Book in PDF, Epub and Kindle

This book presents a detailed overview of the design, formatting, application, and development of microfluidic chips in the context of cell biology research, enumerating each element involved in microfluidics-based cell analysis, discussing its history, status quo, and future prospects, It also offers an extensive review of the research completed in the past decade, including numerous color figures. The individual chapters are based on the respective authors' studies and experiences, providing tips from the frontline to help researchers overcome bottlenecks in their own work. It highlights a number of cutting-edge techniques, such as 3D cell culture, microfluidic droplet technique, and microfluidic chip-mass spectrometry interfaces, offering a first-hand impression of the latest trends in the field and suggesting new research directions. Serving as both an elementary introduction and advanced guidebook, the book interests and inspires scholars and students who are currently studying microfluidics-based cell analysis methods as well as those who wish to do so.

Microfluidics for Single-cell Analysis

Microfluidics for Single-cell Analysis
Title Microfluidics for Single-cell Analysis PDF eBook
Author
Publisher
Pages 263
Release 2019
Genre Cytology
ISBN 9789813297302

Download Microfluidics for Single-cell Analysis Book in PDF, Epub and Kindle

This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor's laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods.