Methods of Qualitative Theory of Differential Equations and Related Topics

Methods of Qualitative Theory of Differential Equations and Related Topics
Title Methods of Qualitative Theory of Differential Equations and Related Topics PDF eBook
Author Lev M. Lerman
Publisher American Mathematical Soc.
Pages 58
Release 2000
Genre Mathematics
ISBN 9780821826638

Download Methods of Qualitative Theory of Differential Equations and Related Topics Book in PDF, Epub and Kindle

Dedicated to the memory of Professor E. A. Leontovich-Andronova, this book was composed by former students and colleagues who wished to mark her contributions to the theory of dynamical systems. A detailed introduction by Leontovich-Andronova's close colleague, L. Shilnikov, presents biographical data and describes her main contribution to the theory of bifurcations and dynamical systems. The main part of the volume is composed of research papers presenting the interests of Leontovich-Andronova, her students and her colleagues. Included are articles on traveling waves in coupled circle maps, bifurcations near a homoclinic orbit, polynomial quadratic systems on the plane, foliations on surfaces, homoclinic bifurcations in concrete systems, topology of plane controllability regions, separatrix cycle with two saddle-foci, dynamics of 4-dimensional symplectic maps, torus maps from strong resonances, structure of 3 degree-of-freedom integrable Hamiltonian systems, splitting separatrices in complex differential equations, Shilnikov's bifurcation for C1-smooth systems and "blue sky catastrophe" for periodic orbits.

A First Course in the Qualitative Theory of Differential Equations

A First Course in the Qualitative Theory of Differential Equations
Title A First Course in the Qualitative Theory of Differential Equations PDF eBook
Author James Hetao Liu
Publisher
Pages 584
Release 2003
Genre Juvenile Nonfiction
ISBN

Download A First Course in the Qualitative Theory of Differential Equations Book in PDF, Epub and Kindle

This book provides a complete analysis of those subjects that are of fundamental importance to the qualitative theory of differential equations and related to current research-including details that other books in the field tend to overlook. Chapters 1-7 cover the basic qualitative properties concerning existence and uniqueness, structures of solutions, phase portraits, stability, bifurcation and chaos. Chapters 8-12 cover stability, dynamical systems, and bounded and periodic solutions. A good reference book for teachers, researchers, and other professionals.

Qualitative Theory of Differential Equations

Qualitative Theory of Differential Equations
Title Qualitative Theory of Differential Equations PDF eBook
Author Viktor Vladimirovich Nemytskii
Publisher
Pages 0
Release 2016-04-19
Genre
ISBN 9780691652283

Download Qualitative Theory of Differential Equations Book in PDF, Epub and Kindle

Book 22 in the Princeton Mathematical Series. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Ordinary Differential Equations

Ordinary Differential Equations
Title Ordinary Differential Equations PDF eBook
Author Luis Barreira
Publisher American Mathematical Society
Pages 264
Release 2023-05-17
Genre Mathematics
ISBN 1470473860

Download Ordinary Differential Equations Book in PDF, Epub and Kindle

This textbook provides a comprehensive introduction to the qualitative theory of ordinary differential equations. It includes a discussion of the existence and uniqueness of solutions, phase portraits, linear equations, stability theory, hyperbolicity and equations in the plane. The emphasis is primarily on results and methods that allow one to analyze qualitative properties of the solutions without solving the equations explicitly. The text includes numerous examples that illustrate in detail the new concepts and results as well as exercises at the end of each chapter. The book is also intended to serve as a bridge to important topics that are often left out of a course on ordinary differential equations. In particular, it provides brief introductions to bifurcation theory, center manifolds, normal forms and Hamiltonian systems.

The Qualitative Theory of Ordinary Differential Equations

The Qualitative Theory of Ordinary Differential Equations
Title The Qualitative Theory of Ordinary Differential Equations PDF eBook
Author Fred Brauer
Publisher Courier Corporation
Pages 325
Release 2012-12-11
Genre Mathematics
ISBN 0486151514

Download The Qualitative Theory of Ordinary Differential Equations Book in PDF, Epub and Kindle

Superb, self-contained graduate-level text covers standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. Focuses on stability theory and its applications to oscillation phenomena, self-excited oscillations, more. Includes exercises.

Qualitative Theory of Differential Equations

Qualitative Theory of Differential Equations
Title Qualitative Theory of Differential Equations PDF eBook
Author Zhifen Zhang
Publisher American Mathematical Soc.
Pages 480
Release 1992
Genre Mathematics
ISBN 0821841831

Download Qualitative Theory of Differential Equations Book in PDF, Epub and Kindle

Subriemannian geometries, also known as Carnot-Caratheodory geometries, can be viewed as limits of Riemannian geometries. They also arise in physical phenomenon involving ``geometric phases'' or holonomy. Very roughly speaking, a subriemannian geometry consists of a manifold endowed with a distribution (meaning a $k$-plane field, or subbundle of the tangent bundle), called horizontal together with an inner product on that distribution. If $k=n$, the dimension of the manifold, we get the usual Riemannian geometry. Given a subriemannian geometry, we can define the distance between two points just as in the Riemannian case, except we are only allowed to travel along the horizontal lines between two points. The book is devoted to the study of subriemannian geometries, their geodesics, and their applications. It starts with the simplest nontrivial example of a subriemannian geometry: the two-dimensional isoperimetric problem reformulated as a problem of finding subriemannian geodesics. Among topics discussed in other chapters of the first part of the book the author mentions an elementary exposition of Gromov's surprising idea to use subriemannian geometry for proving a theorem in discrete group theory and Cartan's method of equivalence applied to the problem of understanding invariants (diffeomorphism types) of distributions. There is also a chapter devoted to open problems. The second part of the book is devoted to applications of subriemannian geometry. In particular, the author describes in detail the following four physical problems: Berry's phase in quantum mechanics, the problem of a falling cat righting herself, that of a microorganism swimming, and a phase problem arising in the $N$-body problem. He shows that all these problems can be studied using the same underlying type of subriemannian geometry: that of a principal bundle endowed with $G$-invariant metrics. Reading the book requires introductory knowledge of differential geometry, and it can serve as a good introduction to this new, exciting area of mathematics. This book provides an introduction to and a comprehensive study of the qualitative theory of ordinary differential equations. It begins with fundamental theorems on existence, uniqueness, and initial conditions, and discusses basic principles in dynamical systems and Poincare-Bendixson theory. The authors present a careful analysis of solutions near critical points of linear and nonlinear planar systems and discuss indices of planar critical points. A very thorough study of limit cycles is given, including many results on quadratic systems and recent developments in China. Other topics included are: the critical point at infinity, harmonic solutions for periodic differential equations, systems of ordinary differential equations on the torus, and structural stability for systems on two-dimensional manifolds. This books is accessible to graduate students and advanced undergraduates and is also of interest to researchers in this area. Exercises are included at the end of each chapter.

The Theory of Differential Equations

The Theory of Differential Equations
Title The Theory of Differential Equations PDF eBook
Author Walter G. Kelley
Publisher Springer Science & Business Media
Pages 434
Release 2010-04-15
Genre Mathematics
ISBN 1441957839

Download The Theory of Differential Equations Book in PDF, Epub and Kindle

For over 300 years, differential equations have served as an essential tool for describing and analyzing problems in many scientific disciplines. This carefully-written textbook provides an introduction to many of the important topics associated with ordinary differential equations. Unlike most textbooks on the subject, this text includes nonstandard topics such as perturbation methods and differential equations and Mathematica. In addition to the nonstandard topics, this text also contains contemporary material in the area as well as its classical topics. This second edition is updated to be compatible with Mathematica, version 7.0. It also provides 81 additional exercises, a new section in Chapter 1 on the generalized logistic equation, an additional theorem in Chapter 2 concerning fundamental matrices, and many more other enhancements to the first edition. This book can be used either for a second course in ordinary differential equations or as an introductory course for well-prepared students. The prerequisites for this book are three semesters of calculus and a course in linear algebra, although the needed concepts from linear algebra are introduced along with examples in the book. An undergraduate course in analysis is needed for the more theoretical subjects covered in the final two chapters.