Methods of Homological Algebra
Title | Methods of Homological Algebra PDF eBook |
Author | Sergei I. Gelfand |
Publisher | Springer Science & Business Media |
Pages | 388 |
Release | 2013-04-17 |
Genre | Mathematics |
ISBN | 3662032201 |
Homological algebra first arose as a language for describing topological prospects of geometrical objects. As with every successful language it quickly expanded its coverage and semantics, and its contemporary applications are many and diverse. This modern approach to homological algebra, by two leading writers in the field, is based on the systematic use of the language and ideas of derived categories and derived functors. Relations with standard cohomology theory (sheaf cohomology, spectral sequences, etc.) are described. In most cases complete proofs are given. Basic concepts and results of homotopical algebra are also presented. The book addresses people who want to learn about a modern approach to homological algebra and to use it in their work.
Homological Algebra
Title | Homological Algebra PDF eBook |
Author | S.I. Gelfand |
Publisher | Springer Science & Business Media |
Pages | 229 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 3642579116 |
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
An Introduction to Homological Algebra
Title | An Introduction to Homological Algebra PDF eBook |
Author | Charles A. Weibel |
Publisher | Cambridge University Press |
Pages | 470 |
Release | 1995-10-27 |
Genre | Mathematics |
ISBN | 113964307X |
The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.
A Course in Homological Algebra
Title | A Course in Homological Algebra PDF eBook |
Author | P.J. Hilton |
Publisher | Springer Science & Business Media |
Pages | 348 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 146849936X |
In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.
An Introduction to Homological Algebra
Title | An Introduction to Homological Algebra PDF eBook |
Author | Northcott |
Publisher | Cambridge University Press |
Pages | 294 |
Release | 1960 |
Genre | Mathematics |
ISBN | 9780521058414 |
Homological algebra, because of its fundamental nature, is relevant to many branches of pure mathematics, including number theory, geometry, group theory and ring theory. Professor Northcott's aim is to introduce homological ideas and methods and to show some of the results which can be achieved. The early chapters provide the results needed to establish the theory of derived functors and to introduce torsion and extension functors. The new concepts are then applied to the theory of global dimensions, in an elucidation of the structure of commutative Noetherian rings of finite global dimension and in an account of the homology and cohomology theories of monoids and groups. A final section is devoted to comments on the various chapters, supplementary notes and suggestions for further reading. This book is designed with the needs and problems of the beginner in mind, providing a helpful and lucid account for those about to begin research, but will also be a useful work of reference for specialists. It can also be used as a textbook for an advanced course.
Methods of Homological Algebra
Title | Methods of Homological Algebra PDF eBook |
Author | Sergei I. Gelfand |
Publisher | Springer Science & Business Media |
Pages | 404 |
Release | 2002-11-26 |
Genre | Mathematics |
ISBN | 9783540435839 |
This modern approach to homological algebra by two leading writers in the field is based on the systematic use of the language and ideas of derived categories and derived functors. It describes relations with standard cohomology theory and provides complete proofs. Coverage also presents basic concepts and results of homotopical algebra. This second edition contains numerous corrections.
Homological Methods in Commutative Algebra
Title | Homological Methods in Commutative Algebra PDF eBook |
Author | Andrea Ferretti |
Publisher | American Mathematical Society |
Pages | 432 |
Release | 2023-11-30 |
Genre | Mathematics |
ISBN | 1470471280 |
This book develops the machinery of homological algebra and its applications to commutative rings and modules. It assumes familiarity with basic commutative algebra, for example, as covered in the author's book, Commutative Algebra. The first part of the book is an elementary but thorough exposition of the concepts of homological algebra, starting from categorical language up to the construction of derived functors and spectral sequences. A full proof of the celebrated Freyd-Mitchell theorem on the embeddings of small Abelian categories is included. The second part of the book is devoted to the application of these techniques in commutative algebra through the study of projective, injective, and flat modules, the construction of explicit resolutions via the Koszul complex, and the properties of regular sequences. The theory is then used to understand the properties of regular rings, Cohen-Macaulay rings and modules, Gorenstein rings and complete intersections. Overall, this book is a valuable resource for anyone interested in learning about homological algebra and its applications in commutative algebra. The clear and thorough presentation of the material, along with the many examples and exercises of varying difficulty, make it an excellent choice for self-study or as a reference for researchers.