Metaheuristic Algorithms: New Methods, Evaluation, and Performance Analysis

Metaheuristic Algorithms: New Methods, Evaluation, and Performance Analysis
Title Metaheuristic Algorithms: New Methods, Evaluation, and Performance Analysis PDF eBook
Author Erik Cuevas
Publisher Springer Nature
Pages 309
Release
Genre
ISBN 303163053X

Download Metaheuristic Algorithms: New Methods, Evaluation, and Performance Analysis Book in PDF, Epub and Kindle

Metaheuristics

Metaheuristics
Title Metaheuristics PDF eBook
Author El-Ghazali Talbi
Publisher John Wiley & Sons
Pages 625
Release 2009-05-27
Genre Computers
ISBN 0470496908

Download Metaheuristics Book in PDF, Epub and Kindle

A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.

Analysis and Comparison of Metaheuristics

Analysis and Comparison of Metaheuristics
Title Analysis and Comparison of Metaheuristics PDF eBook
Author Erik Cuevas
Publisher Springer Nature
Pages 230
Release 2022-11-02
Genre Technology & Engineering
ISBN 3031201051

Download Analysis and Comparison of Metaheuristics Book in PDF, Epub and Kindle

This book presents a comparative perspective of current metaheuristic developments, which have proved to be effective in their application to several complex problems. The study of biological and social entities such as animals, humans, or insects that manifest a cooperative behavior has produced several computational models in metaheuristic methods. Although these schemes emulate very different processes or systems, the rules used to model individual behavior are very similar. Under such conditions, it is not clear to identify which are the advantages or disadvantages of each metaheuristic technique. The book is compiled from a teaching perspective. For this reason, the book is primarily intended for undergraduate and postgraduate students of Science, Electrical Engineering, or Computational Mathematics. It is appropriate for courses such as Artificial Intelligence, Electrical Engineering, Evolutionary Computation. The book is also useful for researchers from the evolutionary and engineering communities. Likewise, engineer practitioners, who are not familiar with metaheuristic computation concepts, will appreciate that the techniques discussed are beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise in engineering areas.

Metaheuristics for Bi-level Optimization

Metaheuristics for Bi-level Optimization
Title Metaheuristics for Bi-level Optimization PDF eBook
Author El-Ghazali Talbi
Publisher Springer
Pages 298
Release 2013-04-09
Genre Technology & Engineering
ISBN 3642378382

Download Metaheuristics for Bi-level Optimization Book in PDF, Epub and Kindle

This book provides a complete background on metaheuristics to solve complex bi-level optimization problems (continuous/discrete, mono-objective/multi-objective) in a diverse range of application domains. Readers learn to solve large scale bi-level optimization problems by efficiently combining metaheuristics with complementary metaheuristics and mathematical programming approaches. Numerous real-world examples of problems demonstrate how metaheuristics are applied in such fields as networks, logistics and transportation, engineering design, finance and security.

Nature-Inspired Optimization Algorithms

Nature-Inspired Optimization Algorithms
Title Nature-Inspired Optimization Algorithms PDF eBook
Author Xin-She Yang
Publisher Elsevier
Pages 277
Release 2014-02-17
Genre Computers
ISBN 0124167454

Download Nature-Inspired Optimization Algorithms Book in PDF, Epub and Kindle

Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm

Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends

Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends
Title Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends PDF eBook
Author Yin, Peng-Yeng
Publisher IGI Global
Pages 446
Release 2012-03-31
Genre Computers
ISBN 1466602716

Download Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends Book in PDF, Epub and Kindle

"This book is a collection of the latest developments, models, and applications within the transdisciplinary fields related to metaheuristic computing, providing readers with insight into a wide range of topics such as genetic algorithms, differential evolution, and ant colony optimization"--Provided by publisher.

Harmony Search Algorithm

Harmony Search Algorithm
Title Harmony Search Algorithm PDF eBook
Author Joong Hoon Kim
Publisher Springer
Pages 456
Release 2015-08-08
Genre Computers
ISBN 3662479265

Download Harmony Search Algorithm Book in PDF, Epub and Kindle

The Harmony Search Algorithm (HSA) is one of the most well-known techniques in the field of soft computing, an important paradigm in the science and engineering community. This volume, the proceedings of the 2nd International Conference on Harmony Search Algorithm 2015 (ICHSA 2015), brings together contributions describing the latest developments in the field of soft computing with a special focus on HSA techniques. It includes coverage of new methods that have potentially immense application in various fields. Contributed articles cover aspects of the following topics related to the Harmony Search Algorithm: analytical studies; improved, hybrid and multi-objective variants; parameter tuning; and large-scale applications. The book also contains papers discussing recent advances on the following topics: genetic algorithms; evolutionary strategies; the firefly algorithm and cuckoo search; particle swarm optimization and ant colony optimization; simulated annealing; and local search techniques. This book offers a valuable snapshot of the current status of the Harmony Search Algorithm and related techniques, and will be a useful reference for practising researchers and advanced students in computer science and engineering.