Automated Machine Learning

Automated Machine Learning
Title Automated Machine Learning PDF eBook
Author Frank Hutter
Publisher Springer
Pages 223
Release 2019-05-17
Genre Computers
ISBN 3030053180

Download Automated Machine Learning Book in PDF, Epub and Kindle

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.

Metalearning

Metalearning
Title Metalearning PDF eBook
Author Pavel Brazdil
Publisher Springer Science & Business Media
Pages 182
Release 2008-11-26
Genre Computers
ISBN 3540732624

Download Metalearning Book in PDF, Epub and Kindle

Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.

Meta-Learning in Computational Intelligence

Meta-Learning in Computational Intelligence
Title Meta-Learning in Computational Intelligence PDF eBook
Author Norbert Jankowski
Publisher Springer
Pages 362
Release 2011-06-10
Genre Technology & Engineering
ISBN 3642209807

Download Meta-Learning in Computational Intelligence Book in PDF, Epub and Kindle

Computational Intelligence (CI) community has developed hundreds of algorithms for intelligent data analysis, but still many hard problems in computer vision, signal processing or text and multimedia understanding, problems that require deep learning techniques, are open. Modern data mining packages contain numerous modules for data acquisition, pre-processing, feature selection and construction, instance selection, classification, association and approximation methods, optimization techniques, pattern discovery, clusterization, visualization and post-processing. A large data mining package allows for billions of ways in which these modules can be combined. No human expert can claim to explore and understand all possibilities in the knowledge discovery process. This is where algorithms that learn how to learnl come to rescue. Operating in the space of all available data transformations and optimization techniques these algorithms use meta-knowledge about learning processes automatically extracted from experience of solving diverse problems. Inferences about transformations useful in different contexts help to construct learning algorithms that can uncover various aspects of knowledge hidden in the data. Meta-learning shifts the focus of the whole CI field from individual learning algorithms to the higher level of learning how to learn. This book defines and reveals new theoretical and practical trends in meta-learning, inspiring the readers to further research in this exciting field.

Metareasoning

Metareasoning
Title Metareasoning PDF eBook
Author Michael T. Cox
Publisher MIT Press
Pages 349
Release 2011
Genre Computers
ISBN 0262014807

Download Metareasoning Book in PDF, Epub and Kindle

Experts report on the latest artificial intelligence research concerning reasoning about reasoning itself.

Learning to Learn

Learning to Learn
Title Learning to Learn PDF eBook
Author Sebastian Thrun
Publisher Springer Science & Business Media
Pages 346
Release 2012-12-06
Genre Computers
ISBN 1461555299

Download Learning to Learn Book in PDF, Epub and Kindle

Over the past three decades or so, research on machine learning and data mining has led to a wide variety of algorithms that learn general functions from experience. As machine learning is maturing, it has begun to make the successful transition from academic research to various practical applications. Generic techniques such as decision trees and artificial neural networks, for example, are now being used in various commercial and industrial applications. Learning to Learn is an exciting new research direction within machine learning. Similar to traditional machine-learning algorithms, the methods described in Learning to Learn induce general functions from experience. However, the book investigates algorithms that can change the way they generalize, i.e., practice the task of learning itself, and improve on it. To illustrate the utility of learning to learn, it is worthwhile comparing machine learning with human learning. Humans encounter a continual stream of learning tasks. They do not just learn concepts or motor skills, they also learn bias, i.e., they learn how to generalize. As a result, humans are often able to generalize correctly from extremely few examples - often just a single example suffices to teach us a new thing. A deeper understanding of computer programs that improve their ability to learn can have a large practical impact on the field of machine learning and beyond. In recent years, the field has made significant progress towards a theory of learning to learn along with practical new algorithms, some of which led to impressive results in real-world applications. Learning to Learn provides a survey of some of the most exciting new research approaches, written by leading researchers in the field. Its objective is to investigate the utility and feasibility of computer programs that can learn how to learn, both from a practical and a theoretical point of view.

Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques

Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques
Title Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques PDF eBook
Author Kulkarni, Siddhivinayak
Publisher IGI Global
Pages 464
Release 2012-06-30
Genre Computers
ISBN 1466618345

Download Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques Book in PDF, Epub and Kindle

Machine learning is an emerging area of computer science that deals with the design and development of new algorithms based on various types of data. Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques addresses the complex realm of machine learning and its applications for solving various real-world problems in a variety of disciplines, such as manufacturing, business, information retrieval, and security. This premier reference source is essential for professors, researchers, and students in artificial intelligence as well as computer science and engineering.

Meta-Learning in Decision Tree Induction

Meta-Learning in Decision Tree Induction
Title Meta-Learning in Decision Tree Induction PDF eBook
Author Krzysztof Grąbczewski
Publisher Springer
Pages 349
Release 2013-09-11
Genre Technology & Engineering
ISBN 3319009605

Download Meta-Learning in Decision Tree Induction Book in PDF, Epub and Kindle

The book focuses on different variants of decision tree induction but also describes the meta-learning approach in general which is applicable to other types of machine learning algorithms. The book discusses different variants of decision tree induction and represents a useful source of information to readers wishing to review some of the techniques used in decision tree learning, as well as different ensemble methods that involve decision trees. It is shown that the knowledge of different components used within decision tree learning needs to be systematized to enable the system to generate and evaluate different variants of machine learning algorithms with the aim of identifying the top-most performers or potentially the best one. A unified view of decision tree learning enables to emulate different decision tree algorithms simply by setting certain parameters. As meta-learning requires running many different processes with the aim of obtaining performance results, a detailed description of the experimental methodology and evaluation framework is provided. Meta-learning is discussed in great detail in the second half of the book. The exposition starts by presenting a comprehensive review of many meta-learning approaches explored in the past described in literature, including for instance approaches that provide a ranking of algorithms. The approach described can be related to other work that exploits planning whose aim is to construct data mining workflows. The book stimulates interchange of ideas between different, albeit related, approaches.