Maximum Likelihood Estimation and Inference

Maximum Likelihood Estimation and Inference
Title Maximum Likelihood Estimation and Inference PDF eBook
Author Russell B. Millar
Publisher John Wiley & Sons
Pages 286
Release 2011-07-26
Genre Mathematics
ISBN 1119977711

Download Maximum Likelihood Estimation and Inference Book in PDF, Epub and Kindle

This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.

Estimation, Inference and Specification Analysis

Estimation, Inference and Specification Analysis
Title Estimation, Inference and Specification Analysis PDF eBook
Author Halbert White
Publisher Cambridge University Press
Pages 396
Release 1996-06-28
Genre Business & Economics
ISBN 9780521574464

Download Estimation, Inference and Specification Analysis Book in PDF, Epub and Kindle

This book examines the consequences of misspecifications for the interpretation of likelihood-based methods of statistical estimation and interference. The analysis concludes with an examination of methods by which the possibility of misspecification can be empirically investigated.

Maximum Likelihood Estimation and Inference

Maximum Likelihood Estimation and Inference
Title Maximum Likelihood Estimation and Inference PDF eBook
Author Russell B. Millar
Publisher John Wiley & Sons
Pages 0
Release 2011-09-19
Genre Mathematics
ISBN 9780470094822

Download Maximum Likelihood Estimation and Inference Book in PDF, Epub and Kindle

This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.

Targeted Learning

Targeted Learning
Title Targeted Learning PDF eBook
Author Mark J. van der Laan
Publisher Springer Science & Business Media
Pages 628
Release 2011-06-17
Genre Mathematics
ISBN 1441997822

Download Targeted Learning Book in PDF, Epub and Kindle

The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticians and applied researchers interested in causal inference and general effect estimation for observational and experimental data. Part I is an accessible introduction to super learning and the targeted maximum likelihood estimator, including related concepts necessary to understand and apply these methods. Parts II-IX handle complex data structures and topics applied researchers will immediately recognize from their own research, including time-to-event outcomes, direct and indirect effects, positivity violations, case-control studies, censored data, longitudinal data, and genomic studies.

Likelihood and Bayesian Inference

Likelihood and Bayesian Inference
Title Likelihood and Bayesian Inference PDF eBook
Author Leonhard Held
Publisher Springer Nature
Pages 409
Release 2020-03-31
Genre Medical
ISBN 3662607921

Download Likelihood and Bayesian Inference Book in PDF, Epub and Kindle

This richly illustrated textbook covers modern statistical methods with applications in medicine, epidemiology and biology. Firstly, it discusses the importance of statistical models in applied quantitative research and the central role of the likelihood function, describing likelihood-based inference from a frequentist viewpoint, and exploring the properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic. In the second part of the book, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. It includes a separate chapter on modern numerical techniques for Bayesian inference, and also addresses advanced topics, such as model choice and prediction from frequentist and Bayesian perspectives. This revised edition of the book “Applied Statistical Inference” has been expanded to include new material on Markov models for time series analysis. It also features a comprehensive appendix covering the prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis, and each chapter is complemented by exercises. The text is primarily intended for graduate statistics and biostatistics students with an interest in applications.

Maximum Likelihood Estimation for Sample Surveys

Maximum Likelihood Estimation for Sample Surveys
Title Maximum Likelihood Estimation for Sample Surveys PDF eBook
Author Raymond L. Chambers
Publisher CRC Press
Pages 393
Release 2012-05-02
Genre Mathematics
ISBN 1584886323

Download Maximum Likelihood Estimation for Sample Surveys Book in PDF, Epub and Kindle

Sample surveys provide data used by researchers in a large range of disciplines to analyze important relationships using well-established and widely used likelihood methods. The methods used to select samples often result in the sample differing in important ways from the target population and standard application of likelihood methods can lead to biased and inefficient estimates. Maximum Likelihood Estimation for Sample Surveys presents an overview of likelihood methods for the analysis of sample survey data that account for the selection methods used, and includes all necessary background material on likelihood inference. It covers a range of data types, including multilevel data, and is illustrated by many worked examples using tractable and widely used models. It also discusses more advanced topics, such as combining data, non-response, and informative sampling. The book presents and develops a likelihood approach for fitting models to sample survey data. It explores and explains how the approach works in tractable though widely used models for which we can make considerable analytic progress. For less tractable models numerical methods are ultimately needed to compute the score and information functions and to compute the maximum likelihood estimates of the model parameters. For these models, the book shows what has to be done conceptually to develop analyses to the point that numerical methods can be applied. Designed for statisticians who are interested in the general theory of statistics, Maximum Likelihood Estimation for Sample Surveys is also aimed at statisticians focused on fitting models to sample survey data, as well as researchers who study relationships among variables and whose sources of data include surveys.

Maximum Likelihood for Social Science

Maximum Likelihood for Social Science
Title Maximum Likelihood for Social Science PDF eBook
Author Michael D. Ward
Publisher Cambridge University Press
Pages 327
Release 2018-11-22
Genre Political Science
ISBN 1107185823

Download Maximum Likelihood for Social Science Book in PDF, Epub and Kindle

Practical, example-driven introduction to maximum likelihood for the social sciences. Emphasizes computation in R, model selection and interpretation.