Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure
Title | Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure PDF eBook |
Author | Henry W. Haslach Jr. |
Publisher | Springer Science & Business Media |
Pages | 305 |
Release | 2011-01-15 |
Genre | Science |
ISBN | 1441977651 |
Maximum Dissipation: Non-Equilibrium Thermodynamics and its Geometric Structure explores the thermodynamics of non-equilibrium processes in materials. The book develops a general technique created in order to construct nonlinear evolution equations describing non-equilibrium processes, while also developing a geometric context for non-equilibrium thermodynamics. Solid materials are the main focus in this volume, but the construction is shown to also apply to fluids. This volume also: • Explains the theory behind thermodynamically-consistent construction of non-linear evolution equations for non-equilibrium processes • Provides a geometric setting for non-equilibrium thermodynamics through several standard models, which are defined as maximum dissipation processes • Emphasizes applications to the time-dependent modeling of soft biological tissue Maximum Dissipation: Non-Equilibrium Thermodynamics and its Geometric Structure will be valuable for researchers, engineers and graduate students in non-equilibrium thermodynamics and the mathematical modeling of material behavior.
Nonequilibrium Thermodynamics
Title | Nonequilibrium Thermodynamics PDF eBook |
Author | Yasar Demirel |
Publisher | Newnes |
Pages | 787 |
Release | 2013-12-16 |
Genre | Technology & Engineering |
ISBN | 0444595813 |
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]
Non-equilibrium Thermodynamics and the Production of Entropy
Title | Non-equilibrium Thermodynamics and the Production of Entropy PDF eBook |
Author | Axel Kleidon |
Publisher | Springer Science & Business Media |
Pages | 288 |
Release | 2004-11-18 |
Genre | Science |
ISBN | 9783540224952 |
The present volume studies the application of concepts from non-equilibrium thermodynamics to a variety of research topics. Emphasis is on the Maximum Entropy Production (MEP) principle and applications to Geosphere-Biosphere couplings. Written by leading researchers from a wide range of backgrounds, the book presents a first coherent account of an emerging field at the interface of thermodynamics, geophysics and life sciences.
Structural Geology
Title | Structural Geology PDF eBook |
Author | Bruce E. Hobbs |
Publisher | Elsevier |
Pages | 681 |
Release | 2014-11-21 |
Genre | Science |
ISBN | 0124079334 |
Structural Geology is a groundbreaking reference that introduces you to the concepts of nonlinear solid mechanics and non-equilibrium thermodynamics in metamorphic geology, offering a fresh perspective on rock structure and its potential for new interpretations of geological evolution. This book stands alone in unifying deformation and metamorphism and the development of the mineralogical fabrics and the structures that we see in the field. This reflects the thermodynamics of systems not at equilibrium within the framework of modern nonlinear solid mechanics. The thermodynamic approach enables the various mechanical, thermal, hydrological and chemical processes to be rigorously coupled through the second law of thermodynamics, invariably leading to nonlinear behavior. The book also differs from others in emphasizing the implications of this nonlinear behavior with respect to the development of the diverse, complex, even fractal, range of structures in deformed metamorphic rocks. Building on the fundamentals of structural geology by discussing the nonlinear processes that operate during the deformation and metamorphism of rocks in the Earth's crust, the book's concepts help geoscientists and graduate-level students understand how these processes control or influence the structures and metamorphic fabrics—providing applications in hydrocarbon exploration, ore mineral exploration, and architectural engineering. - Authored by two of the world's foremost experts in structural geology, representing more than 70 years of experience in research and instruction - Nearly 300 figures, illustrations, working examples, and photographs reinforce key concepts and underscore major advances in structural geology
Reversing the Arrow of Time
Title | Reversing the Arrow of Time PDF eBook |
Author | Bryan W. Roberts |
Publisher | Cambridge University Press |
Pages | 265 |
Release | 2022-12-08 |
Genre | Science |
ISBN | 100930240X |
The arrow of time refers to the curious asymmetry that distinguishes the future from the past. Reversing the Arrow of Time argues that there is an intimate link between the symmetries of 'time itself' and time reversal symmetry in physical theories, which has wide-ranging implications for both physics and its philosophy. This link helps to clarify how we can learn about the symmetries of our world; how to understand the relationship between symmetries and what is real, and how to overcome pervasive illusions about the direction of time. Roberts explains the significance of time reversal in a way that intertwines physics and philosophy, to establish what the arrow of time means and how we can come to know it. This book is both mathematically and philosophically rigorous yet remains accessible to advanced undergraduates in physics and philosophy of physics. This title is also available as Open Access on Cambridge Core.
Handbook of Solid State Diffusion: Volume 1
Title | Handbook of Solid State Diffusion: Volume 1 PDF eBook |
Author | Aloke Paul |
Publisher | Elsevier |
Pages | 550 |
Release | 2017-04-11 |
Genre | Science |
ISBN | 0128043601 |
Handbook of Solid State Diffusion, Volume 1: Diffusion Fundamentals and Techniques covers the basic fundamentals, techniques, applications, and latest developments in the area of solid-state diffusion, offering a pedagogical understanding for students, academicians, and development engineers. Both experimental techniques and computational methods find equal importance in the first of this two-volume set. Volume 1 covers the fundamentals and techniques of solid-state diffusion, beginning with a comprehensive discussion of defects, then different analyzing methods, and finally concluding with an exploration of the different types of modeling techniques. - Presents a handbook with a short mathematical background and detailed examples of concrete applications of the sophisticated methods of analysis - Enables readers to learn the basic concepts of experimental approaches and the computational methods involved in solid-state diffusion - Covers bulk, thin film, and nanomaterials - Introduces the problems and analysis in important materials systems in various applications - Collates contributions from academic and industrial problems from leading scientists involved in developing key concepts across the globe
Multiscale Thermo-Dynamics
Title | Multiscale Thermo-Dynamics PDF eBook |
Author | Michal Pavelka |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 294 |
Release | 2018-08-06 |
Genre | Science |
ISBN | 3110350955 |
One common feature of new emerging technologies is the fusion of the very small (nano) scale and the large scale engineering. The classical environment provided by single scale theories, as for instance by the classical hydrodynamics, is not anymore satisfactory. The main challenge is to keep the important details while still be able to keep the overall picture and simplicity. It is the thermodynamics that addresses this challenge. Our main reason for writing this book is to explain such general viewpoint of thermodynamics and to illustrate it on a very wide range of examples. Contents Levels of description Hamiltonian mechanics Irreversible evolution Reversible and irreversible evolution Multicomponent systems Contact geometry Appendix: Mathematical aspects