Maximal Cohen–Macaulay Modules and Tate Cohomology

Maximal Cohen–Macaulay Modules and Tate Cohomology
Title Maximal Cohen–Macaulay Modules and Tate Cohomology PDF eBook
Author Ragnar-Olaf Buchweitz
Publisher American Mathematical Society
Pages 175
Release 2021-12-16
Genre Mathematics
ISBN 1470453401

Download Maximal Cohen–Macaulay Modules and Tate Cohomology Book in PDF, Epub and Kindle

This book is a lightly edited version of the unpublished manuscript Maximal Cohen–Macaulay modules and Tate cohomology over Gorenstein rings by Ragnar-Olaf Buchweitz. The central objects of study are maximal Cohen–Macaulay modules over (not necessarily commutative) Gorenstein rings. The main result is that the stable category of maximal Cohen–Macaulay modules over a Gorenstein ring is equivalent to the stable derived category and also to the homotopy category of acyclic complexes of projective modules. This assimilates and significantly extends earlier work of Eisenbud on hypersurface singularities. There is also an extensive discussion of duality phenomena in stable derived categories, extending Tate duality on cohomology of finite groups. Another noteworthy aspect is an extension of the classical BGG correspondence to super-algebras. There are numerous examples that illustrate these ideas. The text includes a survey of developments subsequent to, and connected with, Buchweitz's manuscript.

Maximal Cohen-Macaulay Modules Over Non-Isolated Surface Singularities and Matrix Problems

Maximal Cohen-Macaulay Modules Over Non-Isolated Surface Singularities and Matrix Problems
Title Maximal Cohen-Macaulay Modules Over Non-Isolated Surface Singularities and Matrix Problems PDF eBook
Author Igor Burban
Publisher American Mathematical Soc.
Pages 134
Release 2017-07-13
Genre Mathematics
ISBN 1470425378

Download Maximal Cohen-Macaulay Modules Over Non-Isolated Surface Singularities and Matrix Problems Book in PDF, Epub and Kindle

In this article the authors develop a new method to deal with maximal Cohen–Macaulay modules over non–isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen–Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen–Macaulay representation type. The authors' approach is illustrated on the case of k as well as several other rings. This study of maximal Cohen–Macaulay modules over non–isolated singularities leads to a new class of problems of linear algebra, which the authors call representations of decorated bunches of chains. They prove that these matrix problems have tame representation type and describe the underlying canonical forms.

Trends in Representation Theory of Algebras and Related Topics

Trends in Representation Theory of Algebras and Related Topics
Title Trends in Representation Theory of Algebras and Related Topics PDF eBook
Author Andrzej Skowroński
Publisher European Mathematical Society
Pages 732
Release 2008
Genre Representations of algebras
ISBN 9783037190623

Download Trends in Representation Theory of Algebras and Related Topics Book in PDF, Epub and Kindle

This book is concerned with recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, quantum groups, homological algebra, invariant theory, combinatorics, model theory and theoretical physics. The collection of articles, written by leading researchers in the field, is conceived as a sort of handbook providing easy access to the present state of knowledge and stimulating further development. The topics under discussion include diagram algebras, Brauer algebras, cellular algebras, quasi-hereditary algebras, Hall algebras, Hecke algebras, symplectic reflection algebras, Cherednik algebras, Kashiwara crystals, Fock spaces, preprojective algebras, cluster algebras, rank varieties, varieties of algebras and modules, moduli of representations of quivers, semi-invariants of quivers, Cohen-Macaulay modules, singularities, coherent sheaves, derived categories, spectral representation theory, Coxeter polynomials, Auslander-Reiten theory, Calabi-Yau triangulated categories, Poincare duality spaces, selfinjective algebras, periodic algebras, stable module categories, Hochschild cohomologies, deformations of algebras, Galois coverings of algebras, tilting theory, algebras of small homological dimensions, representation types of algebras, and model theory. This book consists of fifteen self-contained expository survey articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. They contain a large number of open problems and give new perspectives for research in the field.

Cohen-Macaulay Representations

Cohen-Macaulay Representations
Title Cohen-Macaulay Representations PDF eBook
Author Graham J. Leuschke
Publisher American Mathematical Soc.
Pages 390
Release 2012-05-02
Genre Mathematics
ISBN 0821875817

Download Cohen-Macaulay Representations Book in PDF, Epub and Kindle

This book is a comprehensive treatment of the representation theory of maximal Cohen-Macaulay (MCM) modules over local rings. This topic is at the intersection of commutative algebra, singularity theory, and representations of groups and algebras. Two introductory chapters treat the Krull-Remak-Schmidt Theorem on uniqueness of direct-sum decompositions and its failure for modules over local rings. Chapters 3-10 study the central problem of classifying the rings with only finitely many indecomposable MCM modules up to isomorphism, i.e., rings of finite CM type. The fundamental material--ADE/simple singularities, the double branched cover, Auslander-Reiten theory, and the Brauer-Thrall conjectures--is covered clearly and completely. Much of the content has never before appeared in book form. Examples include the representation theory of Artinian pairs and Burban-Drozd's related construction in dimension two, an introduction to the McKay correspondence from the point of view of maximal Cohen-Macaulay modules, Auslander-Buchweitz's MCM approximation theory, and a careful treatment of nonzero characteristic. The remaining seven chapters present results on bounded and countable CM type and on the representation theory of totally reflexive modules.

Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)

Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)
Title Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes) PDF eBook
Author Boyan Sirakov
Publisher World Scientific
Pages 5393
Release 2019-02-27
Genre Mathematics
ISBN 9813272899

Download Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes) Book in PDF, Epub and Kindle

The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.

Infinite Length Modules

Infinite Length Modules
Title Infinite Length Modules PDF eBook
Author Henning Krause
Publisher Birkhäuser
Pages 437
Release 2012-12-06
Genre Mathematics
ISBN 3034884265

Download Infinite Length Modules Book in PDF, Epub and Kindle

This book is concerned with the role played by modules of infinite length when dealing with problems in the representation theory of groups and algebras, but also in topology and geometry; it shows the intriguing interplay between finite and infinite length modules.

Commutative Algebra and Noncommutative Algebraic Geometry

Commutative Algebra and Noncommutative Algebraic Geometry
Title Commutative Algebra and Noncommutative Algebraic Geometry PDF eBook
Author David Eisenbud
Publisher Cambridge University Press
Pages 303
Release 2015-11-19
Genre Mathematics
ISBN 110714972X

Download Commutative Algebra and Noncommutative Algebraic Geometry Book in PDF, Epub and Kindle

This book surveys fundamental current topics in these two areas of research, emphasising the lively interaction between them. Volume 2 focuses on the most recent research.