Matrix Groups for Undergraduates
Title | Matrix Groups for Undergraduates PDF eBook |
Author | Kristopher Tapp |
Publisher | American Mathematical Soc. |
Pages | 250 |
Release | 2016-04-07 |
Genre | Mathematics |
ISBN | 1470427222 |
Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups.
Matrix Groups
Title | Matrix Groups PDF eBook |
Author | M. L. Curtis |
Publisher | Springer Science & Business Media |
Pages | 222 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461252865 |
These notes were developed from a course taught at Rice Univ- sity in the spring of 1976 and again at the University of Hawaii in the spring of 1977. It is assumed that the students know some linear algebra and a little about differentiation of vector-valued functions. The idea is to introduce students to some of the concepts of Lie group theory-- all done at the concrete level of matrix groups. As much as we could, we motivated developments as a means of deciding when two matrix groups (with different definitions) are isomorphic. In Chapter I "group" is defined and examples are given; ho- morphism and isomorphism are defined. For a field k denotes the algebra of n x n matrices over k We recall that A E Mn(k) has an inverse if and only if det A ~ 0 , and define the general linear group GL(n,k) We construct the skew-field lli of to operate linearly on llin quaternions and note that for A E Mn(lli) we must operate on the right (since we mUltiply a vector by a scalar n on the left). So we use row vectors for R , en, llin and write xA for the row vector obtained by matrix multiplication. We get a ~omplex-valued determinant function on Mn (11) such that det A ~ 0 guarantees that A has an inverse.
Matrix Groups
Title | Matrix Groups PDF eBook |
Author | Andrew Baker |
Publisher | Springer Science & Business Media |
Pages | 332 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1447101839 |
This book offers a first taste of the theory of Lie groups, focusing mainly on matrix groups: closed subgroups of real and complex general linear groups. The first part studies examples and describes classical families of simply connected compact groups. The second section introduces the idea of a lie group and explores the associated notion of a homogeneous space using orbits of smooth actions. The emphasis throughout is on accessibility.
The Random Matrix Theory of the Classical Compact Groups
Title | The Random Matrix Theory of the Classical Compact Groups PDF eBook |
Author | Elizabeth S. Meckes |
Publisher | Cambridge University Press |
Pages | 225 |
Release | 2019-08-01 |
Genre | Mathematics |
ISBN | 1108317995 |
This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.
Lie Groups
Title | Lie Groups PDF eBook |
Author | Harriet Suzanne Katcher Pollatsek |
Publisher | MAA |
Pages | 194 |
Release | 2009-09-24 |
Genre | Mathematics |
ISBN | 9780883857595 |
This textbook is a complete introduction to Lie groups for undergraduate students. The only prerequisites are multi-variable calculus and linear algebra. The emphasis is placed on the algebraic ideas, with just enough analysis to define the tangent space and the differential and to make sense of the exponential map. This textbook works on the principle that students learn best when they are actively engaged. To this end nearly 200 problems are included in the text, ranging from the routine to the challenging level. Every chapter has a section called 'Putting the pieces together' in which all definitions and results are collected for reference and further reading is suggested.
Lie Groups, Lie Algebras, and Representations
Title | Lie Groups, Lie Algebras, and Representations PDF eBook |
Author | Brian Hall |
Publisher | Springer |
Pages | 452 |
Release | 2015-05-11 |
Genre | Mathematics |
ISBN | 3319134671 |
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette
Groups, Matrices, and Vector Spaces
Title | Groups, Matrices, and Vector Spaces PDF eBook |
Author | James B. Carrell |
Publisher | Springer |
Pages | 415 |
Release | 2017-09-02 |
Genre | Mathematics |
ISBN | 038779428X |
This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material. Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.