Mathematics of the Transcendental
Title | Mathematics of the Transcendental PDF eBook |
Author | Alain Badiou |
Publisher | A&C Black |
Pages | 291 |
Release | 2014-01-16 |
Genre | Philosophy |
ISBN | 1441130381 |
In Mathematics of the Transcendental, Alain Badiou painstakingly works through the pertinent aspects of category theory, demonstrating their internal logic and veracity, their derivation and distinction from set theory, and the 'thinking of being'. In doing so he sets out the basic onto-logical requirements of his greater and transcendental logics as articulated in his magnum opus, Logics of Worlds. Previously unpublished in either French or English, Mathematics of the Transcendental provides Badiou's readers with a much-needed complete elaboration of his understanding and use of category theory. The book is vital to understanding the mathematical and logical basis of his theory of appearing as elaborated in Logics of Worlds and other works and is essential reading for his many followers.
Transcendental Number Theory
Title | Transcendental Number Theory PDF eBook |
Author | Alan Baker |
Publisher | Cambridge University Press |
Pages | 180 |
Release | 1990-09-28 |
Genre | Mathematics |
ISBN | 9780521397919 |
First published in 1975, this classic book gives a systematic account of transcendental number theory, that is those numbers which cannot be expressed as the roots of algebraic equations having rational coefficients. Their study has developed into a fertile and extensive theory enriching many branches of pure mathematics. Expositions are presented of theories relating to linear forms in the logarithms of algebraic numbers, of Schmidt's generalisation of the Thue-Siegel-Roth theorem, of Shidlovsky's work on Siegel's |E|-functions and of Sprindzuk's solution to the Mahler conjecture. The volume was revised in 1979: however Professor Baker has taken this further opportunity to update the book including new advances in the theory and many new references.
Transcendental Numbers. (AM-16)
Title | Transcendental Numbers. (AM-16) PDF eBook |
Author | Carl Ludwig Siegel |
Publisher | Princeton University Press |
Pages | 102 |
Release | 2016-03-02 |
Genre | Mathematics |
ISBN | 1400882354 |
The description for this book, Transcendental Numbers. (AM-16), will be forthcoming.
Transcendental Curves in the Leibnizian Calculus
Title | Transcendental Curves in the Leibnizian Calculus PDF eBook |
Author | Viktor Blasjo |
Publisher | Academic Press |
Pages | 284 |
Release | 2017-04-22 |
Genre | Mathematics |
ISBN | 0128132981 |
Transcendental Curves in the Leibnizian Calculus analyzes a mathematical and philosophical conflict between classical and early modern mathematics. In the late 17th century, mathematics was at the brink of an identity crisis. For millennia, mathematical meaning and ontology had been anchored in geometrical constructions, as epitomized by Euclid's ruler and compass. As late as 1637, Descartes had placed himself squarely in this tradition when he justified his new technique of identifying curves with equations by means of certain curve-tracing instruments, thereby bringing together the ancient constructive tradition and modern algebraic methods in a satisfying marriage. But rapid advances in the new fields of infinitesimal calculus and mathematical mechanics soon ruined his grand synthesis. Descartes's scheme left out transcendental curves, i.e. curves with no polynomial equation, but in the course of these subsequent developments such curves emerged as indispensable. It was becoming harder and harder to juggle cutting-edge mathematics and ancient conceptions of its foundations at the same time, yet leading mathematicians, such as Leibniz felt compelled to do precisely this. The new mathematics fit more naturally an analytical conception of curves than a construction-based one, yet no one wanted to betray the latter, as this was seen as virtually tantamount to stop doing mathematics altogether. The credibility and authority of mathematics depended on it. - Brings to light this underlying and often implicit complex of concerns that permeate early calculus - Evaluates the technical conception and mathematical construction of the geometrical method - Reveals a previously unrecognized Liebnizian programmatic cohesion in early calculus - Provides a beautifully written work of outstanding original scholarship
Transcendental Numbers
Title | Transcendental Numbers PDF eBook |
Author | M. Ram Murty |
Publisher | Springer |
Pages | 219 |
Release | 2014-06-24 |
Genre | Mathematics |
ISBN | 1493908324 |
This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.
Solving Transcendental Equations
Title | Solving Transcendental Equations PDF eBook |
Author | John P. Boyd |
Publisher | SIAM |
Pages | 446 |
Release | 2014-09-23 |
Genre | Mathematics |
ISBN | 161197352X |
Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute--not always needed, but indispensible when it is. The author's goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations.
Mathematics and Its Applications
Title | Mathematics and Its Applications PDF eBook |
Author | Jairo José da Silva |
Publisher | Springer |
Pages | 274 |
Release | 2017-08-22 |
Genre | Philosophy |
ISBN | 3319630733 |
This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what does it mean to exist, mathematical structures: what are they and how do we know them, how different layers of mathematical structuring relate to each other and to perceptual structures, and how to use mathematics to find out how the world is. The book simultaneously develops along two lines, both inspired and enlightened by Edmund Husserl’s phenomenological philosophy. One line leads to the establishment of a particular version of mathematical structuralism, free of “naturalist” and empiricist bias. The other leads to a logical-epistemological explanation and justification of the applicability of mathematics carried out within a unique structuralist perspective. This second line points to the “unreasonable” effectiveness of mathematics in physics as a means of representation, a tool, and a source of not always logically justified but useful and effective heuristic strategies.