Mathematical Theories of Populations
Title | Mathematical Theories of Populations PDF eBook |
Author | Frank. Hoppensteadt |
Publisher | SIAM |
Pages | 79 |
Release | 1975-01-01 |
Genre | Social Science |
ISBN | 9781611970487 |
Mathematical theories of populations have appeared both implicitly and explicitly in many important studies of populations, human populations as well as populations of animals, cells and viruses. They provide a systematic way for studying a population's underlying structure. A basic model in population age structure is studied and then applied, extended and modified, to several population phenomena such as stable age distributions, self-limiting effects, and two-sex populations. Population genetics are studied with special attention to derivation and analysis of a model for a one-locus, two-allele trait in a large randomly mating population. The dynamics of contagious phenomena in a population are studied in the context of epidemic diseases.
A Short History of Mathematical Population Dynamics
Title | A Short History of Mathematical Population Dynamics PDF eBook |
Author | Nicolas Bacaër |
Publisher | Springer Science & Business Media |
Pages | 160 |
Release | 2011-02-01 |
Genre | Mathematics |
ISBN | 0857291157 |
As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity offered by modern computers. This book traces the history of population dynamics---a theoretical subject closely connected to genetics, ecology, epidemiology and demography---where mathematics has brought significant insights. It presents an overview of the genesis of several important themes: exponential growth, from Euler and Malthus to the Chinese one-child policy; the development of stochastic models, from Mendel's laws and the question of extinction of family names to percolation theory for the spread of epidemics, and chaotic populations, where determinism and randomness intertwine. The reader of this book will see, from a different perspective, the problems that scientists face when governments ask for reliable predictions to help control epidemics (AIDS, SARS, swine flu), manage renewable resources (fishing quotas, spread of genetically modified organisms) or anticipate demographic evolutions such as aging.
Mathematical Population Genetics 1
Title | Mathematical Population Genetics 1 PDF eBook |
Author | Warren J. Ewens |
Publisher | Springer Science & Business Media |
Pages | 448 |
Release | 2004-01-09 |
Genre | Science |
ISBN | 9780387201917 |
This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.
Mathematical Models in Population Biology and Epidemiology
Title | Mathematical Models in Population Biology and Epidemiology PDF eBook |
Author | Fred Brauer |
Publisher | Springer Science & Business Media |
Pages | 432 |
Release | 2013-03-09 |
Genre | Science |
ISBN | 1475735162 |
The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.
Mathematics in Population Biology
Title | Mathematics in Population Biology PDF eBook |
Author | Horst R. Thieme |
Publisher | Princeton University Press |
Pages | 564 |
Release | 2018-06-05 |
Genre | Science |
ISBN | 0691187657 |
The formulation, analysis, and re-evaluation of mathematical models in population biology has become a valuable source of insight to mathematicians and biologists alike. This book presents an overview and selected sample of these results and ideas, organized by biological theme rather than mathematical concept, with an emphasis on helping the reader develop appropriate modeling skills through use of well-chosen and varied examples. Part I starts with unstructured single species population models, particularly in the framework of continuous time models, then adding the most rudimentary stage structure with variable stage duration. The theme of stage structure in an age-dependent context is developed in Part II, covering demographic concepts, such as life expectation and variance of life length, and their dynamic consequences. In Part III, the author considers the dynamic interplay of host and parasite populations, i.e., the epidemics and endemics of infectious diseases. The theme of stage structure continues here in the analysis of different stages of infection and of age-structure that is instrumental in optimizing vaccination strategies. Each section concludes with exercises, some with solutions, and suggestions for further study. The level of mathematics is relatively modest; a "toolbox" provides a summary of required results in differential equations, integration, and integral equations. In addition, a selection of Maple worksheets is provided. The book provides an authoritative tour through a dazzling ensemble of topics and is both an ideal introduction to the subject and reference for researchers.
The Mathematical Theory of Selection, Recombination, and Mutation
Title | The Mathematical Theory of Selection, Recombination, and Mutation PDF eBook |
Author | R. Bürger |
Publisher | John Wiley & Sons |
Pages | 432 |
Release | 2000-11-02 |
Genre | Mathematics |
ISBN |
"It is close to being a masterpiece...could well be the classic presentation of the area." Warren J. Ewens, University of Pennsylvania, USA Population genetics is concerned with the study of the genetic, ecological, and evolutionary factors that influence and change the genetic composition of populations. The emphasis here is on models that have a direct bearing on evolutionary quantitative genetics. Applications concerning the maintenance of genetic variation in quantitative traits and their dynamics under selection are treated in detail. * Provides a unified, self-contained and in-depth study of the theory of multilocus systems * Introduces the basic population-genetic models * Explores the dynamical and equilibrium properties of the distribution of quantitative traits under selection * Summarizes important results from more demanding sections in a comprehensible way * Employs a clear and logical presentation style Following an introduction to elementary population genetics and discussion of the general theory of selection at two or more loci, the author considers a number of mutation-selection models, and derives the dynamical equations for polygenic traits under general selective regimes. The final chapters are concerned with the maintenance of quantitative-genetic variation, the response to directional selection, the evolutionary role of deleterious mutations, and other topics. Graduate students and researchers in population genetics, evolutionary theory, and biomathematics will benefit from the in-depth coverage. This text will make an excellent reference volume for the fields of quantitative genetics, population and theoretical biology.
The Basic Approach to Age-Structured Population Dynamics
Title | The Basic Approach to Age-Structured Population Dynamics PDF eBook |
Author | Mimmo Iannelli |
Publisher | Springer |
Pages | 357 |
Release | 2017-08-27 |
Genre | Mathematics |
ISBN | 9402411461 |
This book provides an introduction to age-structured population modeling which emphasizes the connection between mathematical theory and underlying biological assumptions. Through the rigorous development of the linear theory and the nonlinear theory alongside numerics, the authors explore classical equations that describe the dynamics of certain ecological systems. Modeling aspects are discussed to show how relevant problems in the fields of demography, ecology and epidemiology can be formulated and treated within the theory. In particular, the book presents extensions of age-structured modeling to the spread of diseases and epidemics while also addressing the issue of regularity of solutions, the asymptotic behavior of solutions, and numerical approximation. With sections on transmission models, non-autonomous models and global dynamics, this book fills a gap in the literature on theoretical population dynamics. The Basic Approach to Age-Structured Population Dynamics will appeal to graduate students and researchers in mathematical biology, epidemiology and demography who are interested in the systematic presentation of relevant models and mathematical methods.