Mathematical Structures of Epidemic Systems
Title | Mathematical Structures of Epidemic Systems PDF eBook |
Author | Vincenzo Capasso |
Publisher | Springer Science & Business Media |
Pages | 291 |
Release | 2008-08-06 |
Genre | Mathematics |
ISBN | 3540565264 |
The dynamics of infectious diseases represents one of the oldest and ri- est areas of mathematical biology. From the classical work of Hamer (1906) and Ross (1911) to the spate of more modern developments associated with Anderson and May, Dietz, Hethcote, Castillo-Chavez and others, the subject has grown dramatically both in volume and in importance. Given the pace of development, the subject has become more and more di?use, and the need to provide a framework for organizing the diversity of mathematical approaches has become clear. Enzo Capasso, who has been a major contributor to the mathematical theory, has done that in the present volume, providing a system for organizing and analyzing a wide range of models, depending on the str- ture of the interaction matrix. The ?rst class, the quasi-monotone or positive feedback systems, can be analyzed e?ectively through the use of comparison theorems, that is the theory of order-preserving dynamical systems; the s- ond, the skew-symmetrizable systems, rely on Lyapunov methods. Capasso develops the general mathematical theory, and considers a broad range of - amples that can be treated within one or the other framework. In so doing, he has provided the ?rst steps towards the uni?cation of the subject, and made an invaluable contribution to the Lecture Notes in Biomathematics. Simon A. Levin Princeton, January 1993 Author’s Preface to Second Printing In the Preface to the First Printing of this volume I wrote: \ . .
Mathematics of Epidemics on Networks
Title | Mathematics of Epidemics on Networks PDF eBook |
Author | István Z. Kiss |
Publisher | Springer |
Pages | 423 |
Release | 2017-06-08 |
Genre | Mathematics |
ISBN | 3319508067 |
This textbook provides an exciting new addition to the area of network science featuring a stronger and more methodical link of models to their mathematical origin and explains how these relate to each other with special focus on epidemic spread on networks. The content of the book is at the interface of graph theory, stochastic processes and dynamical systems. The authors set out to make a significant contribution to closing the gap between model development and the supporting mathematics. This is done by: Summarising and presenting the state-of-the-art in modeling epidemics on networks with results and readily usable models signposted throughout the book; Presenting different mathematical approaches to formulate exact and solvable models; Identifying the concrete links between approximate models and their rigorous mathematical representation; Presenting a model hierarchy and clearly highlighting the links between model assumptions and model complexity; Providing a reference source for advanced undergraduate students, as well as doctoral students, postdoctoral researchers and academic experts who are engaged in modeling stochastic processes on networks; Providing software that can solve differential equation models or directly simulate epidemics on networks. Replete with numerous diagrams, examples, instructive exercises, and online access to simulation algorithms and readily usable code, this book will appeal to a wide spectrum of readers from different backgrounds and academic levels. Appropriate for students with or without a strong background in mathematics, this textbook can form the basis of an advanced undergraduate or graduate course in both mathematics and other departments alike.
Mathematical Epidemiology
Title | Mathematical Epidemiology PDF eBook |
Author | Fred Brauer |
Publisher | Springer Science & Business Media |
Pages | 415 |
Release | 2008-04-30 |
Genre | Medical |
ISBN | 3540789103 |
Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).
Mathematical Tools for Understanding Infectious Disease Dynamics
Title | Mathematical Tools for Understanding Infectious Disease Dynamics PDF eBook |
Author | Odo Diekmann |
Publisher | Princeton University Press |
Pages | 517 |
Release | 2012-11-18 |
Genre | Science |
ISBN | 1400845629 |
Mathematical modeling is critical to our understanding of how infectious diseases spread at the individual and population levels. This book gives readers the necessary skills to correctly formulate and analyze mathematical models in infectious disease epidemiology, and is the first treatment of the subject to integrate deterministic and stochastic models and methods. Mathematical Tools for Understanding Infectious Disease Dynamics fully explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology. This comprehensive and accessible book also features numerous detailed exercises throughout; full elaborations to all exercises are provided. Covers the latest research in mathematical modeling of infectious disease epidemiology Integrates deterministic and stochastic approaches Teaches skills in model construction, analysis, inference, and interpretation Features numerous exercises and their detailed elaborations Motivated by real-world applications throughout
Mathematical Models in Epidemiology
Title | Mathematical Models in Epidemiology PDF eBook |
Author | Fred Brauer |
Publisher | Springer Nature |
Pages | 628 |
Release | 2019-10-10 |
Genre | Mathematics |
ISBN | 1493998285 |
The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of disease transmission models. It includes (i) an introduction to the main concepts of compartmental models including models with heterogeneous mixing of individuals and models for vector-transmitted diseases, (ii) a detailed analysis of models for important specific diseases, including tuberculosis, HIV/AIDS, influenza, Ebola virus disease, malaria, dengue fever and the Zika virus, (iii) an introduction to more advanced mathematical topics, including age structure, spatial structure, and mobility, and (iv) some challenges and opportunities for the future. There are exercises of varying degrees of difficulty, and projects leading to new research directions. For the benefit of public health professionals whose contact with mathematics may not be recent, there is an appendix covering the necessary mathematical background. There are indications which sections require a strong mathematical background so that the book can be useful for both mathematical modelers and public health professionals.
Age Structured Epidemic Modeling
Title | Age Structured Epidemic Modeling PDF eBook |
Author | Xue-Zhi Li |
Publisher | Springer |
Pages | 383 |
Release | 2021-05-29 |
Genre | Mathematics |
ISBN | 9783030424985 |
This book introduces advanced mathematical methods and techniques for analysis and simulation of models in mathematical epidemiology. Chronological age and class-age play an important role in the description of infectious diseases and this text provides the tools for the analysis of this type of partial differential equation models. This book presents general theoretical tools as well as large number of specific examples to guide the reader to develop their own tools that they may then apply to study structured models in mathematical epidemiology. The book will be a valuable addition to the arsenal of all researchers interested in developing theory or studying specific models with age structure.
Contributions to Partial Differential Equations and Applications
Title | Contributions to Partial Differential Equations and Applications PDF eBook |
Author | B. N. Chetverushkin |
Publisher | Springer |
Pages | 456 |
Release | 2018-07-19 |
Genre | Technology & Engineering |
ISBN | 3319783254 |
This book treats Modelling of CFD problems, Numerical tools for PDE, and Scientific Computing and Systems of ODE for Epidemiology, topics that are closely related to the scientific activities and interests of Prof. William Fitzgibbon, Prof. Yuri Kuznetsov, and Prof. O. Pironneau, whose outstanding achievements are recognised in this volume. It contains 20 contributions from leading scientists in applied mathematics dealing with partial differential equations and their applications to engineering, ab-initio chemistry and life sciences. It includes the mathematical and numerical contributions to PDE for applications presented at the ECCOMAS thematic conference "Contributions to PDE for Applications" held at Laboratoire Jacques Louis Lions in Paris, France, August 31- September 1, 2015, and at the Department of Mathematics, University of Houston, Texas, USA, February 26-27, 2016. This event brought together specialists from universities and research institutions who are developing or applying numerical PDE or ODE methods with an emphasis on industrial and societal applications. This volume is of interest to researchers and practitioners as well as advanced students or engineers in applied and computational mathematics. All contributions are written at an advanced scientific level with no effort made by the editors to make this volume self-contained. It is assumed that the reader is a specialist already who knows the basis of this field of research and has the capability of understanding and appreciating the latest developments in this field.