Mathematical Modelling in Biomedicine

Mathematical Modelling in Biomedicine
Title Mathematical Modelling in Biomedicine PDF eBook
Author Vitaly Volpert
Publisher MDPI
Pages 224
Release 2021-01-26
Genre Mathematics
ISBN 3039434934

Download Mathematical Modelling in Biomedicine Book in PDF, Epub and Kindle

Mathematical modelling in biomedicine is a rapidly developing scientific discipline at the intersection of medicine, biology, mathematics, physics, and computer science. Its progress is stimulated by fundamental scientific questions and by the applications to public health. This book represents a collection of papers devoted to mathematical modelling of various physiological problems in normal and pathological conditions. It covers a broad range of topics including cardiovascular system and diseases, heart and brain modelling, tumor growth, viral infections, and immune response. Computational models of blood circulation are used to study the influence of heart arrhythmias on coronary blood flow and on operating modes for left-ventricle-assisted devices. Wave propagation in the cardiac tissue is investigated in order to show the influence of tissue heterogeneity and fibrosis. The models of tumor growth are used to determine optimal protocols of antiangiogenic and radiotherapy. The models of viral hepatitis kinetics are considered for the parameter identification, and the evolution of viral quasi-species is investigated. The book presents the state-of-the-art in mathematical modelling in biomedicine and opens new perspectives in this passionate field of research.

Mathematical Methods and Models in Biomedicine

Mathematical Methods and Models in Biomedicine
Title Mathematical Methods and Models in Biomedicine PDF eBook
Author Urszula Ledzewicz
Publisher Springer Science & Business Media
Pages 426
Release 2012-10-20
Genre Mathematics
ISBN 1461441781

Download Mathematical Methods and Models in Biomedicine Book in PDF, Epub and Kindle

Mathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.

Mathematical Models in Biomedical Science

Mathematical Models in Biomedical Science
Title Mathematical Models in Biomedical Science PDF eBook
Author Duncan Chambers
Publisher
Pages 234
Release 2020-09-15
Genre Medical
ISBN 9781632428899

Download Mathematical Models in Biomedical Science Book in PDF, Epub and Kindle

The field of biomedical science studies the mechanisms that are at the core of the function and formation of living organisms. It ranges in scope from the study of individual molecules to complex human functions. This contributes to our understanding of how different diseases, traumas and genetic defects alter physiological and behavioral processes. Modern biomedical science works at the cellular, molecular and systems level with the aid of techniques of molecular biology and genome characterization. Such studies have implications on potential medical therapies and clinical studies, and the understanding of disease mechanisms. The integration of mathematics with biomedical sciences has led to many such applications and innovations. Mathematical modeling and analysis, optimization techniques and computational methods, numerical analysis, applied statistics or a combination of these are used for solving problems in this field. Mathematical models and methods also form the basis for the construction of imaging techniques in biomedical science. This has transformed the practice of medicine and furthered the scope of non-invasive diagnosis and surgical planning for guiding surgery, biopsy and radiation therapy. The field of biomedical science and engineering has undergone rapid development over the past few decades. This book elucidates the mathematical concepts and models that have led to advancements in biomedical science. It is an essential guide for both academicians and those who wish to pursue this discipline further.

Mathematical Modelling in Biomedicine

Mathematical Modelling in Biomedicine
Title Mathematical Modelling in Biomedicine PDF eBook
Author Y. Cherruault
Publisher Springer Science & Business Media
Pages 286
Release 1986-02-28
Genre Mathematics
ISBN 9789027721495

Download Mathematical Modelling in Biomedicine Book in PDF, Epub and Kindle

Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then is that they can't see the problem. one day, perhaps you will find the final question. G.K. Chesterton. The Scandal of Father Brown 'The point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, cod ing theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical pro gramming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.

Mathematical Methods and Models in Biomedicine

Mathematical Methods and Models in Biomedicine
Title Mathematical Methods and Models in Biomedicine PDF eBook
Author Urszula Ledzewicz
Publisher Springer Science & Business Media
Pages 426
Release 2012-10-21
Genre Mathematics
ISBN 1461441773

Download Mathematical Methods and Models in Biomedicine Book in PDF, Epub and Kindle

Mathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.

Computational Modeling in Biomedical Engineering and Medical Physics

Computational Modeling in Biomedical Engineering and Medical Physics
Title Computational Modeling in Biomedical Engineering and Medical Physics PDF eBook
Author Alexandru Morega
Publisher Academic Press
Pages 320
Release 2020-10-02
Genre Science
ISBN 0128178973

Download Computational Modeling in Biomedical Engineering and Medical Physics Book in PDF, Epub and Kindle

Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models. Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies. Presents the fundamentals of mathematical and numerical modeling of engineering problems in medicine Discusses many of the most common modelling scenarios for Biomedical Engineering, including, electrical activity of the heart hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods Includes discussion of the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling, physics scaling, Constructal Law criteria in morphing shape and structure of systems with internal flows, computational domain construction, numerical modelling issues, and validation techniques used to ascertain numerical simulation results

Mathematical Biology II

Mathematical Biology II
Title Mathematical Biology II PDF eBook
Author James D. Murray
Publisher Springer Science & Business Media
Pages 834
Release 2011-02-15
Genre Mathematics
ISBN 0387952284

Download Mathematical Biology II Book in PDF, Epub and Kindle

This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS