Mathematical Methods in Dynamical Systems

Mathematical Methods in Dynamical Systems
Title Mathematical Methods in Dynamical Systems PDF eBook
Author S. Chakraverty
Publisher CRC Press
Pages 393
Release 2023-05-19
Genre Mathematics
ISBN 1000833771

Download Mathematical Methods in Dynamical Systems Book in PDF, Epub and Kindle

The art of applying mathematics to real-world dynamical problems such as structural dynamics, fluid dynamics, wave dynamics, robot dynamics, etc. can be extremely challenging. Various aspects of mathematical modelling that may include deterministic or uncertain (fuzzy, interval, or stochastic) scenarios, along with integer or fractional order, are vital to understanding these dynamical systems. Mathematical Methods in Dynamical Systems offers problem-solving techniques and includes different analytical, semi-analytical, numerical, and machine intelligence methods for finding exact and/or approximate solutions of governing equations arising in dynamical systems. It provides a singular source of computationally efficient methods to investigate these systems and includes coverage of various industrial applications in a simple yet comprehensive way.

Mathematical Modeling of Earth's Dynamical Systems

Mathematical Modeling of Earth's Dynamical Systems
Title Mathematical Modeling of Earth's Dynamical Systems PDF eBook
Author Rudy Slingerland
Publisher Princeton University Press
Pages 246
Release 2011-03-28
Genre Science
ISBN 1400839114

Download Mathematical Modeling of Earth's Dynamical Systems Book in PDF, Epub and Kindle

A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html

Mathematical Methods of Classical Mechanics

Mathematical Methods of Classical Mechanics
Title Mathematical Methods of Classical Mechanics PDF eBook
Author V.I. Arnol'd
Publisher Springer Science & Business Media
Pages 530
Release 2013-04-09
Genre Mathematics
ISBN 1475720637

Download Mathematical Methods of Classical Mechanics Book in PDF, Epub and Kindle

This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.

Mathematical Methods in Dynamic Economics

Mathematical Methods in Dynamic Economics
Title Mathematical Methods in Dynamic Economics PDF eBook
Author A. Simonovits
Publisher Springer
Pages 308
Release 2000-06-05
Genre Business & Economics
ISBN 0230513530

Download Mathematical Methods in Dynamic Economics Book in PDF, Epub and Kindle

This book contains a concise description of important mathematical methods of dynamics and suitable economic models. It covers discrete as well as continuous-time systems, linear and nonlinear models. Mixing traditional and modern materials, the study covers dynamics with and without optimization, naive and rational expectations, respectively. In addition to standard models of growth and cycles, the book also contains original studies on control of a multisector economy and expectations-driven multicohort economy. Numerous examples, problems (with solutions) and figures complete the book.

Understanding Nonlinear Dynamics

Understanding Nonlinear Dynamics
Title Understanding Nonlinear Dynamics PDF eBook
Author Daniel Kaplan
Publisher Springer Science & Business Media
Pages 438
Release 2012-12-06
Genre Mathematics
ISBN 1461208238

Download Understanding Nonlinear Dynamics Book in PDF, Epub and Kindle

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors.

Mathematical Methods in Optimization of Differential Systems

Mathematical Methods in Optimization of Differential Systems
Title Mathematical Methods in Optimization of Differential Systems PDF eBook
Author Viorel Barbu
Publisher Springer Science & Business Media
Pages 271
Release 2012-12-06
Genre Mathematics
ISBN 9401107602

Download Mathematical Methods in Optimization of Differential Systems Book in PDF, Epub and Kindle

This work is a revised and enlarged edition of a book with the same title published in Romanian by the Publishing House of the Romanian Academy in 1989. It grew out of lecture notes for a graduate course given by the author at the University if Ia~i and was initially intended for students and readers primarily interested in applications of optimal control of ordinary differential equations. In this vision the book had to contain an elementary description of the Pontryagin maximum principle and a large number of examples and applications from various fields of science. The evolution of control science in the last decades has shown that its meth ods and tools are drawn from a large spectrum of mathematical results which go beyond the classical theory of ordinary differential equations and real analy ses. Mathematical areas such as functional analysis, topology, partial differential equations and infinite dimensional dynamical systems, geometry, played and will continue to play an increasing role in the development of the control sciences. On the other hand, control problems is a rich source of deep mathematical problems. Any presentation of control theory which for the sake of accessibility ignores these facts is incomplete and unable to attain its goals. This is the reason we considered necessary to widen the initial perspective of the book and to include a rigorous mathematical treatment of optimal control theory of processes governed by ordi nary differential equations and some typical problems from theory of distributed parameter systems.

Algebraic and Symbolic Computation Methods in Dynamical Systems

Algebraic and Symbolic Computation Methods in Dynamical Systems
Title Algebraic and Symbolic Computation Methods in Dynamical Systems PDF eBook
Author Alban Quadrat
Publisher Springer
Pages 311
Release 2020-04-07
Genre Science
ISBN 9783030383558

Download Algebraic and Symbolic Computation Methods in Dynamical Systems Book in PDF, Epub and Kindle

This book aims at reviewing recent progress in the direction of algebraic and symbolic computation methods for functional systems, e.g. ODE systems, differential time-delay equations, difference equations and integro-differential equations. In the nineties, modern algebraic theories were introduced in mathematical systems theory and in control theory. Combined with real algebraic geometry, which was previously introduced in control theory, the past years have seen a flourishing development of algebraic methods in control theory. One of the strengths of algebraic methods lies in their close connections to computations. The use of the above-mentioned algebraic theories in control theory has been an important source of motivation to develop effective versions of these theories (when possible). With the development of computer algebra and computer algebra systems, symbolic methods for control theory have been developed over the past years. The goal of this book is to propose a partial state of the art in this direction. To make recent results more easily accessible to a large audience, the chapters include materials which survey the main mathematical methods and results and which are illustrated with explicit examples.