Introduction to Mathematical Logic
Title | Introduction to Mathematical Logic PDF eBook |
Author | Elliot Mendelsohn |
Publisher | Springer Science & Business Media |
Pages | 351 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 1461572886 |
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Mathematical Logic and Its Applications
Title | Mathematical Logic and Its Applications PDF eBook |
Author | Dimiter G. Skordev |
Publisher | Springer Science & Business Media |
Pages | 366 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461308976 |
The Summer School and Conference on Mathematical Logic and its Applications, September 24 - October 4, 1986, Druzhba, Bulgaria, was honourably dedicated to the 80-th anniversary of Kurt Godel (1906 - 1978), one of the greatest scientists of this (and not only of this) century. The main topics of the Meeting were: Logic and the Foundation of Mathematics; Logic and Computer Science; Logic, Philosophy, and the Study of Language; Kurt Godel's life and deed. The scientific program comprised 5 kinds of activities, namely: a) a Godel Session with 3 invited lecturers b) a Summer School with 17 invited lecturers c) a Conference with 13 contributed talks d) Seminar talks (one invited and 12 with no preliminary selection) e) three discussions The present volume reflects an essential part of this program, namely 14 of the invited lectures and all of the contributed talks. Not presented in the volltme remai ned si x of the i nvi ted lecturers who di d not submi t texts: Yu. Ershov - The Language of!:-expressions and its Semantics; S. Goncharov - Mathematical Foundations of Semantic Programming; Y. Moschovakis - Foundations of the Theory of Algorithms; N. Nagornyj - Is Realizability of Propositional Formulae a GBdelean Property; N. Shanin - Some Approaches to Finitization of Mathematical Analysis; V. Uspensky - Algorithms and Randomness - joint with A.N.
Mathematical Logic
Title | Mathematical Logic PDF eBook |
Author | Jean E. Rubin |
Publisher | Harcourt Brace College Publishers |
Pages | 448 |
Release | 1990 |
Genre | Logic, Symbolic and mathematical |
ISBN |
Logic for Applications
Title | Logic for Applications PDF eBook |
Author | Anil Nerode |
Publisher | Springer Science & Business Media |
Pages | 383 |
Release | 2012-12-06 |
Genre | Computers |
ISBN | 1468402110 |
In writing this book, our goal was to produce a text suitable for a first course in mathematical logic more attuned than the traditional textbooks to the recent dramatic growth in the applications of logic to computer science. Thus our choice of topics has been heavily influenced by such applications. Of course, we cover the basic traditional topics - syntax, semantics, soundness, completeness and compactness - as well as a few more advanced results such as the theorems of Skolem-Lowenheim and Herbrand. Much of our book, however, deals with other less traditional topics. Resolution theorem proving plays a major role in our treatment of logic, especially in its application to Logic Programming and PROLOG. We deal extensively with the mathematical foundations of all three of these subjects. In addition, we include two chapters on nonclassical logic- modal and intuitionistic - that are becoming increasingly important in computer science. We develop the basic material on the syntax and se mantics (via Kripke frames) for each of these logics. In both cases, our approach to formal proofs, soundness and completeness uses modifications of the same tableau method introduced for classical logic. We indicate how it can easily be adapted to various other special types of modal log ics. A number of more advanced topics (including nonmonotonic logic) are also briefly introduced both in the nonclassical logic chapters and in the material on Logic Programming and PROLOG.
Introduction to Symbolic Logic and Its Applications
Title | Introduction to Symbolic Logic and Its Applications PDF eBook |
Author | Rudolf Carnap |
Publisher | Courier Corporation |
Pages | 280 |
Release | 2012-07-12 |
Genre | Mathematics |
ISBN | 048614349X |
Clear, comprehensive, and rigorous treatment develops the subject from elementary concepts to the construction and analysis of relatively complex logical languages. Hundreds of problems, examples, and exercises. 1958 edition.
Logic and Its Applications
Title | Logic and Its Applications PDF eBook |
Author | Edmund Burke |
Publisher | |
Pages | 336 |
Release | 1996 |
Genre | Computers |
ISBN |
This book is an introduction to mathematical logic and its application to the field of computer science. Starting with the first principles of logic, the theory is reinforced by detailed applications.
A Friendly Introduction to Mathematical Logic
Title | A Friendly Introduction to Mathematical Logic PDF eBook |
Author | Christopher C. Leary |
Publisher | Lulu.com |
Pages | 382 |
Release | 2015 |
Genre | Computers |
ISBN | 1942341075 |
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.